RESUMO
A group of functionalized fluorene derivatives that are structurally similar to the cellular prion protein ligand N,N'-(methylenedi-4,1-phenylene)bis [2-(1-pyrrolidinyl)acetamide] (GN8) have been synthesized. These compounds show remarkable native fluorescence due to the fluorene ring. The substituents introduced at positions 2 and 7 of the fluorene moiety are sufficiently flexible to accommodate the beta-conformational folding that develops in amyloidogenic proteins. Changes in the native fluorescence of these fluorene derivatives provide evidence of transformations in the amyloidogenic aggregation processes of insulin. The increase observed in the fluorescence intensity of the sensors in the presence of native insulin or amyloid aggregates suggest their potential use as fluorescence probes for detecting abnormal conformations; therefore, the compounds can be proposed for use as "turn-on" fluorescence sensors. Protein-sensor dissociation constants are in the 5-10 µM range and an intermolecular charge transfer process between the protein and the sensors can be successfully exploited for the sensitive detection of abnormal insulin conformations. The values obtained for the Stern-Volmer quenching constant for compound 4 as a consequence of the sensor-protein interaction are comparable to those obtained for the reference compound GN8. Fluorene derivatives showed good performance in scavenging reactive oxygen species (ROS), and they show antioxidant capacity according to the FRAP and DPPH assays.
Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas , Fluorometria , Fluorenos/químicaRESUMO
Alzheimer's Disease (AD) remains one of the most challenging health-related issues for our society. It is becoming increasingly prevalent, especially in developed countries, due to the rising life expectancy and, moreover, represents a considerable economic burden worldwide. All efforts at the discovery of new diagnostic and therapeutic tools in the last decades have invariably met with failure, making AD an incurable illness and underscoring the need for new approaches. In recent years, theranostic agents have emerged as an interesting strategy. They are molecules able to simultaneously provide diagnostic information and deliver therapeutic activity, allowing for the assessment of the molecule activity, the organism response and the pharmacokinetics. This makes these compounds promising for streamlining research on AD drugs and for their application in personalized medicine. We review here the field of small-molecule theranostic agents as promising tools for the development of novel diagnostic and therapeutic resources against AD, highlighting the positive and significant impact that theranostics can be expected to have in the near future in clinical practice.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Medicina de Precisão , Peptídeos beta-AmiloidesRESUMO
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.