Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(28): 5777-5795, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38979982

RESUMO

We recently implemented our parallelized quantum-classical dynamical approach, known as the Time-Dependent Discrete Variable Representation (TDDVR) method, which is applied to the spectroscopically important hexafluorobenzene (HFBz) radical cation, where several conical intersections exist in their seven lowest excited electronic states (S11B2u, S21E1g, S31B1u, S41E1u, and S51A2u) considering degeneracy among potential energy surfaces (PESs), to demonstrate their various dynamical aspects. This new parallel version shows almost linear scalability with increasing number of computing processors. To get photoelectron (PE) spectra, Mass-Analyzed Threshold Ionization (MATI) spectra, population dynamics, and many other dynamical observables, the first-principles dynamics is applied at the state-of-the-art level to the corresponding Hamiltonian, where the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) type interactions are involved in those coupled seven electronic states. The quantum-classical method is used to thoroughly analyze the effects of these couplings on the nuclear dynamics of the involved electronic states, and the findings are compared with those observables obtained from experiments. Intrinsic dynamical properties are explained using the reduced densities of the wave packet (WP) in a coupled electronic manifold. The PE and MATI spectra of HFBz computed using TDDVR are found to be in good agreement with earlier experimental data and other theoretically simulated spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA