RESUMO
Prion-like proteins can assume distinct conformational and physical states in the same cell. Sequence analysis suggests that prion-like proteins are prevalent in various species; however, it remains unclear what functional space they occupy in multicellular organisms. Here, we report the identification of a prion-like protein, Herzog (CG5830), through a multimodal screen in Drosophila melanogaster. Herzog functions as a membrane-associated phosphatase and controls embryonic patterning, likely being involved in TGF-ß/BMP and FGF/EGF signaling pathways. Remarkably, monomeric Herzog is enzymatically inactive and becomes active upon amyloid-like assembly. The prion-like domain of Herzog is necessary for both its assembly and membrane targeting. Removal of the prion-like domain impairs activity, while restoring assembly on the membrane using a heterologous prion-like domain and membrane-targeting motif can restore phosphatase activity. This study provides an example of a prion-like domain that allows an enzyme to gain essential functionality via amyloid-like assembly to control animal development.
Assuntos
Proteínas Amiloidogênicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Príons/química , Domínios ProteicosRESUMO
The nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins. The chromatin and nucleolar proteome indicated that FGF2 stimulation modulates proteins related to transcription, rRNA expression and chromatin-remodeling proteins. The global transcriptional rate and nucleolus area increased along with nucleolar disorganization upon 24â h of FGF2 stimulation. FGF2 stimulation induced immature rRNA accumulation by increasing rRNA transcription. The rDNA-associated protein analysis reinforced that FGF2 stimulus interferes with transcription and rRNA processing. RNA Pol I inhibition partially reversed the growth arrest induced by FGF2, indicating that changes in rRNA expression might be crucial for triggering the antiproliferative effect. Taken together, we demonstrate that the antiproliferative FGF2 stimulus triggers significant transcriptional changes and modulates the main cell transcription site, the nucleolus.
Assuntos
Nucléolo Celular , Fator 2 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Nucléolo Celular/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcrição Gênica , DNA Ribossômico/genética , Cromatina/genética , Cromatina/metabolismoRESUMO
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.
Assuntos
Anormalidades Craniofaciais , RNA Polimerase I , RNA Ribossômico , Proteínas Ribossômicas , Crânio , Transcrição Gênica , Animais , Anormalidades Craniofaciais/genética , Disostose Mandibulofacial/genética , Camundongos , Crista Neural/embriologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas Ribossômicas/metabolismo , Crânio/embriologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. Many proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC subunit. Using molecular, proteomic, protein engineering, and interaction network approaches, we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in addition to Sin3/HDAC. Additional proteins uniquely recovered from the Halo-SAP25 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the ubiquitin carboxyl-terminal hydrolase 11 (USP11). Furthermore, mutational analysis demonstrates that distinct regions of SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3). These results suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different enzymatic complexes to control Sin3/HDAC-mediated gene expression. The data were deposited with the MASSIVE repository with the identifiers MSV000093576 and MSV000093553.
Assuntos
Desmetilação do DNA , Complexo Correpressor Histona Desacetilase e Sin3 , Ubiquitina-Proteína Ligases , Humanos , Células HEK293 , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Glicosilação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Ligação Proteica , Proteômica/métodosRESUMO
OBJECTIVES: To address the paucity of literature comparing outcomes achieved with utilisation of the high-power holmium:yttrium-aluminium-garnet (Ho:YAG) laser with MOSES technology vs those achieved with the thulium fibre laser (TFL) in mini-percutaneous nephrolithotomy (PCNL). METHODS: A retrospective review was performed of patients undergoing supine mini-PCNL between August 2021 and May 2023. Exclusion criteria were urinary diversion, simultaneous utilisation of >1 laser platform, use of any other form of fragmentation, and ureteric stones. The Ho:YAG platform (Lumenis Pulse P120H™ with MOSES technology, 120W; Boston Scientific®) and the TFL (Soltive SuperPulsed Thulium Fibre [SPTF], 60W; Olympus®) were compared. Data on stone-free rate (SFR) were determined by computed tomography performed on the first postoperative day and presented as absence of stone fragments, no fragments larger than 2 mm, or no fragments larger than 4 mm. RESULTS: A total of 100 patients met the inclusion criteria, 51 mini-PCNLs with the Ho:YAG laser and 49 with the SPTF laser. No significant differences in demographics or stone characteristics were detected between the two groups. The Ho:YAG laser utilised less energy and time, resulting in higher ablation efficiency (P < 0.05) and less total operating time (P < 0.05). Overall, there was no difference in SFR in any category between the Ho:YAG group and the SPTF group (no fragments: relative risk [RR] 0.81, 95% confidence interval [CI] 0.59-1.12, P = 0.21; fragments <2 mm: RR 0.86, 95% CI 0.67-1.10, P = 0.23; fragments <4 mm: RR 0.96, 95% CI 0.80-1.15, P = 0.67). CONCLUSIONS: Although we observed an equivalent postoperative SFR, this study supports a shorter operating time and greater intra-operative laser efficiency with the Ho:YAG laser over the SPTF laser in mini-PCNL.
Assuntos
Cálculos Renais , Lasers de Estado Sólido , Nefrolitotomia Percutânea , Túlio , Humanos , Feminino , Lasers de Estado Sólido/uso terapêutico , Masculino , Nefrolitotomia Percutânea/métodos , Nefrolitotomia Percutânea/instrumentação , Túlio/uso terapêutico , Estudos Retrospectivos , Pessoa de Meia-Idade , Cálculos Renais/cirurgia , Adulto , Resultado do Tratamento , Decúbito Dorsal , Idoso , Litotripsia a Laser/métodos , Litotripsia a Laser/instrumentaçãoRESUMO
PURPOSE: We aimed to assess whether the presence of contaminants in the pre-operative urine culture (preop-UC) predicts postoperative urinary tract infection (postop-UTI) in patients undergoing elective ureteroscopy with laser lithotripsy. METHODS: A retrospective chart review was performed from 01/2019 to 12/2021 examining patients with unilateral stone burden ≤ 2 cm who underwent ureteroscopy with laser lithotripsy and had a preop-UC within 3 months. Positive, negative, contaminated, and polymicrobial definitions for UCs were established in accordance with current guidelines. Patients with positive and polymicrobial cultures were excluded. Postop-UTI was defined as the presence of urinary symptoms and a positive UC within 30 days of the procedure. Multivariable logistic regression models were utilized to evaluate risk factors for contamination in the preop-UC and the risk of postop-UTI. RESULTS: A total of 201 patients met the inclusion-exclusion criteria. Preop-UC was negative in 153 patients and contaminated in 48 patients. Significant contaminant-related factors included female gender and increased BMI. Postop-UTI was diagnosed in 3.2% of patients with negative preop-UCs and 4.2% of patients with contaminants, with no difference between groups (p = 0.67). The regression model determined that the presence of contaminants in preop-UC failed to predict postop-UTI (OR 0.69, p = 0.64). CONCLUSION: The presence of contaminants in preop-UCs is not associated with an increased risk of postop-UTIs after ureteroscopy. Our study supports that contaminants in the preop-UC can be interpreted as a negative UC in terms of postop-UTI risk stratification. Preoperative antibiotics should not be prescribed for patients undergoing uncomplicated ureteroscopy for stone surgery in the setting of a contaminated preop-UC.
Assuntos
Ureteroscopia , Infecções Urinárias , Humanos , Feminino , Estudos Retrospectivos , Ureteroscopia/efeitos adversos , Ureteroscopia/métodos , Infecções Urinárias/epidemiologia , Infecções Urinárias/etiologia , Infecções Urinárias/tratamento farmacológico , Urinálise , Antibacterianos/uso terapêutico , Complicações Pós-Operatórias/etiologiaRESUMO
PURPOSE: To report real-time IRP and FR while performing flexible ureteroscopy in porcine kidney model utilizing LithoVue™ Elite (Boston Scientific®) with different irrigation systems, including automated pumps. METHODS: Using an ex-vivo model of porcine kidney, IRPs were measured with LithoVue Elite. Ureteroscopic settings (US) were tested with all permutations of irrigation methods (IM), working channel occupant (WCO), and ureteral access sheaths (UAS). IMs included: Single Action Pumping System (SAPS™, Boston Scientific), Thermedx FluidSmart™ (Stryker®), and ENDOMAT™ (Karl Storz®). Pumps were tested at 50, 100, and 150 mmHg. WCOs included a 1.9Fr zero-tip basket, 200 µm, and 365 µm laser fibers. UASs utilized 11/13Fr and 12/14Fr 36 cm. RESULTS: 84 different US were tested (252 experiments). ENDOMAT had higher IRP but the same FR as Thermedx at the same US for 50 and 100 mmHg (p < 0.01). SAPS had higher IRP and FR than pumps in all US studies (p < 0.01). There was positive correlation between pressure set by the pump and both IRP and FR (rho > 0.9). As the diameter of the WCO increased, lower IRP and FR were observed with the pumps (p < 0.01). With SAPS, IRP was similar regardless of WCO, but FR was decreased with the increased diameter of WCO (p = 0.81 and p < 0.01, respectively). There was significantly higher IRP when using 11/13Fr UAS than 12/14Fr (p < 0.01). CONCLUSION: IRP was higher with SAPS than automated pumps. ENDOMAT showed higher IRP than Thermedx when under 150 mmHg. IRP and FR increase with higher pump pressure and decrease with larger diameter WCO. Likewise, a larger UAS significantly reduced IRP.
Assuntos
Rim , Pressão , Irrigação Terapêutica , Ureteroscopia , Animais , Suínos , Irrigação Terapêutica/instrumentação , Ureteroscopia/instrumentação , Rim/fisiologia , Desenho de Equipamento , UreteroscópiosRESUMO
The evolution of omics and computational competency has accelerated discoveries of the underlying biological processes in an unprecedented way. High throughput methodologies, such as flow cytometry, can reveal deeper insights into cell processes, thereby allowing opportunities for scientific discoveries related to health and diseases. However, working with cytometry data often imposes complex computational challenges due to high-dimensionality, large size, and nonlinearity of the data structure. In addition, cytometry data frequently exhibit diverse patterns across biomarkers and suffer from substantial class imbalances which can further complicate the problem. The existing methods of cytometry data analysis either predict cell population or perform feature selection. Through this study, we propose a "wisdom of the crowd" approach to simultaneously predict rare cell populations and perform feature selection by integrating a pool of modern machine learning (ML) algorithms. Given that our approach integrates superior performing ML models across different normalization techniques based on entropy and rank, our method can detect diverse patterns existing across the model features. Furthermore, the method identifies a dynamic biomarker structure that divides the features into persistently selected, unselected, and fluctuating assemblies indicating the role of each biomarker in rare cell prediction, which can subsequently aid in studies of disease progression.
Assuntos
Algoritmos , Aprendizado de Máquina , Biomarcadores/análiseRESUMO
PURPOSE: Stone retrieval can be a laborious aspect of percutaneous nephrolithotomy (PCNL). A unique phenomenon of mini-PCNL is the vortex-effect (VE), a hydrodynamic form of stone retrieval. Additionally, the vacuum-assisted sheath (VAS) was recently developed as a new tool for stone extraction. The purpose of our study is to investigate the impact of renal access angle (as a surrogate for patient positioning) on stone retrieval efficiency and compare the efficiency among methods of stone retrieval. METHODS: A kidney model was filled with 3 mm artificial stones. Access to the mid-calyx was obtained using a 15Fr sheath. Stones were retrieved over three minutes at angles of 0°, 25°, and 75° utilizing the VE, VAS, and basket. Stones were weighed for comparison of stones/retraction and stones/minute. Trials were repeated three times at each angle. RESULTS: Renal access angle of 0° was associated with increased stone retrieval for both the VE and VAS (p < 0.05). The VE was the most effective method for stones retrieved per individual retraction at an angle of 0° (p < 0.005), although when analyzed as stones retrieved per minute, the VE and VAS were no longer statistically different (p = 0.08). At 75°, none of the methods were statistically different, regardless if analyzed as stones per retraction or per minute (p = 0.20-0.40). CONCLUSIONS: Renal access angle of 0° is more efficient for stone retrieval than a steep upward angle. There is no difference in stone retrieval efficiency between the VE and VAS methods, although both are superior to the basket at lower sheath angles.
Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Nefrostomia Percutânea , Humanos , Nefrolitotomia Percutânea/métodos , Cálculos Renais/cirurgia , Cálculos Renais/complicações , Rim , Cálices Renais , Tecnologia , Resultado do Tratamento , Nefrostomia Percutânea/métodosRESUMO
BACKGROUND: Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS: RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS: Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION: JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Assuntos
Azepinas/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Indolizinas , Kisspeptinas/genética , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Depuradores Classe A/genética , Sulfonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.
Assuntos
Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatografia Líquida , Histona Desacetilase 1/metabolismo , Humanos , Família Multigênica , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Proteínas Recombinantes , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética , Espectrometria de Massas em TandemRESUMO
BACKGROUND: High-output heart failure (HF) is a type of HF characterized by signs and symptoms of HF and a cardiac output of 8 L/min or greater or a cardiac index greater than 3.9 L/min/m 2 . High-output HF occurs secondary to an underlying condition that requires high cardiac output due to an increase in oxygen consumption or decreased systemic vascular resistance. Obesity is a major cause of high-output HF, yet there is limited research on obesity-related high-output HF. Thus, the pathophysiologic mechanisms of this syndrome are not fully understood. OBJECTIVE: The objectives of this integrative review were to describe the current state of the research regarding obesity-related high-output HF and to recommend direction for future research. METHODS: We conducted an integrative review focusing on the peer-reviewed literature on patients with obesity-related high-output HF using Whittemore and Knafl's methodology. MEDLINE, CINAHL, and EMBASE electronic databases were searched for all publications indexed in the databases as of March 9, 2022. A narrative synthesis of definitions and symptoms, obesity as an underlying condition, pathophysiology, and treatments of obesity-related high-output HF was completed. RESULTS: A total of 6 articles were included in the integrative review, with 1 nonexperimental, retrospective study and 5 literature reviews. Understanding of obesity-related high-output HF is very limited because of scant empirical evidence in the existing literature. Possible pathophysiologic mechanisms include increased pressure in the upper airways, adipokine dysregulation, increased metabolic activity, and insulin resistance. CONCLUSION: Additional research is needed on the pathophysiologic mechanisms of obesity-related high-output HF to begin investigations on therapeutic interventions to improve health outcomes.
RESUMO
Detecting subnetworks in large networks is of great interest. Recently, we developed a topological score framework for the analysis of protein interaction networks and implemented it as a web application, called TopS. Given a multivariate data presented as a matrix, TopS generates topological scores between any column and row in the matrix aiming to identify overwhelming preference interactions. This information can be further used into visualization tools such as clusters and networks to investigate how networks benefit from these interactions. We present a web tool called TopS that aims to have an intuitive user interface. Users can upload data from a simple delimited CSV file that can be created in a spreadsheet program. As an output, user is provided with a scoring matrix as tab-delimited file that can be interchanged with other software, heatmap and clustering figures in pdf format. Here we demonstrate the current capabilities of TopS using an existing dataset generated for the study of the human Sin3 chromatin remodeling complex.
Assuntos
Biologia Computacional/métodos , Visualização de Dados , Mapeamento de Interação de Proteínas/métodos , Software , Análise por Conglomerados , Conjuntos de Dados como Assunto , Humanos , Mapas de Interação de Proteínas , Interface Usuário-ComputadorRESUMO
A hub protein in protein interaction networks will typically have a large number of diverse interactions. Determining the core interactions and the function of such a hub protein remains a significant challenge in the study of networks. Proteins with WD40 repeats represent a large class of proteins that can be hub proteins. WDR76 is a poorly characterized WD40 repeat protein with possible involvement in DNA damage repair, cell-cycle progression, apoptosis, gene expression regulation, and protein quality control. WDR76 has a large and diverse interaction network that has made its study challenging. Here we rigorously carry out a series of affinity purification coupled to mass spectrometry (AP-MS) analyses to map out the WDR76 interactome through different biochemical conditions. We apply AP-MS analysis coupled to size-exclusion chromatography to resolve WDR76-based protein complexes. Furthermore, we also show that WDR76 interacts with the CCT complex via its WD40 repeat domain and with DNA-PK-KU, PARP1, GAN, SIRT1, and histones outside of the WD40 domain. An evaluation of the stability of WDR76 interactions led to focused and streamlined reciprocal analyses that validate the interactions with GAN and SIRT1. Overall, the approaches used to study WDR76 would be valuable to study other proteins containing WD40 repeat domains, which are conserved in a large number of proteins in many organisms.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/genética , Repetições WD40/genética , Apoptose/genética , Proteínas do Citoesqueleto/genética , Dano ao DNA/genética , Reparo do DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/genética , Sirtuína 1/genéticaRESUMO
Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.
Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/patologia , Animais , Humanos , Camundongos , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologiaRESUMO
Mediator plays an integral role in activation of RNA polymerase II (Pol II) transcription. A key step in activation is binding of Mediator to Pol II to form the Mediator-Pol II holoenzyme. Here, we exploit a combination of biochemistry and macromolecular EM to investigate holoenzyme assembly. We identify a subset of human Mediator head module subunits that bind Pol II independent of other subunits and thus probably contribute to a major Pol II binding site. In addition, we show that binding of human Mediator to Pol II depends on the integrity of a conserved "hinge" in the middle module MED21-MED7 heterodimer. Point mutations in the hinge region leave core Mediator intact but lead to increased disorder of the middle module and markedly reduced affinity for Pol II. These findings highlight the importance of Mediator conformation for holoenzyme assembly.
Assuntos
Holoenzimas/metabolismo , Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Holoenzimas/química , Holoenzimas/genética , Humanos , Complexo Mediador/química , Complexo Mediador/genética , Ligação Proteica , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transcrição GênicaRESUMO
The study of conserved protein interaction networks seeks to better understand the evolution and regulation of protein interactions. Here, we present a quantitative proteomic analysis of 18 orthologous baits from three distinct chromatin-remodeling complexes in Saccharomyces cerevisiae and Homo sapiens. We demonstrate that abundance levels of orthologous proteins correlate strongly between the two organisms and both networks have highly similar topologies. We therefore used the protein abundances in one species to cross-predict missing protein abundance levels in the other species. Lastly, we identified a novel conserved low-abundance subnetwork further demonstrating the value of quantitative analysis of networks.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite's epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intraerythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence.
Assuntos
Código das Histonas , Estágios do Ciclo de Vida/genética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Epigênese Genética , Eritrócitos/parasitologia , Histonas/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/efeitos adversos , Proteínas de Protozoários/análise , Transcrição Gênica , Ativação TranscricionalRESUMO
Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.