RESUMO
BACKGROUND: In patients with high risk stage II and stage III colon cancer (CC), curative surgery followed by adjuvant FOLFOX-4 chemotherapy has become the standard of care. However, for 20 to 30% of these patients, the current curative treatment strategy of surgical excision followed by adjuvant chemotherapy fails either to clear locoregional spread or to eradicate distant micrometastases, leading to disease recurrence. Preoperative chemotherapy is an attractive concept for these CCs and has the potential to impact upon both of these causes of failure. Optimum systemic therapy at the earliest possible opportunity may be more effective at eradicating distant metastases than the same treatment given after the delay and immunological stress of surgery. Added to this, shrinking the primary tumor before surgery may reduce the risk of incomplete surgical excision, and the risk of tumor cell shedding during surgery. METHODS/DESIGN: PRODIGE 22--ECKINOXE is a multicenter randomized phase II trial designed to evaluate efficacy and feasibility of two chemotherapy regimens (FOLFOX-4 alone and FOLFOX-4 + Cetuximab) in a peri-operative strategy in patients with bulky CCs. Patients with CC deemed as high risk T3, T4 and/or N2 on initial abdominopelvic CT scan are randomized to either colectomy and adjuvant chemotherapy (control arm), or 4 cycles of neoadjuvant chemotherapy with FOLFOX-4 (for RAS mutated patients). In RAS wild-type patients a third arm testing FOLFOX+ cetuximab has been added prior to colectomy. Patients in the neoadjuvant chemotherapy arms will receive postoperative treatment for 4 months (8 cycles) to complete their therapeutic schedule. The primary endpoint of the study is the histological Tumor Regression Grade (TRG) as defined by Ryan. The secondary endpoints are: treatment strategy safety (toxicity, primary tumor related complications under chemotherapy, peri-operative morbidity), disease-free and recurrence free survivals at 3 years, quality of life, carcinologic quality and completeness of the surgery, initial radiological staging and radiological response to neoadjuvant chemotherapy, and the correlation between histopathological and radiological response. Taking into account a 50% prevalence of CC without RAS mutation, accrual of 165 patients is needed for this Phase II trial. TRIAL REGISTRATION: NCT01675999 (ClinicalTrials.gov).
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/cirurgia , Cetuximab/administração & dosagem , Quimioterapia Adjuvante , Neoplasias do Colo/patologia , Fluoruracila/administração & dosagem , Humanos , Leucovorina/administração & dosagem , Terapia Neoadjuvante , Estadiamento de Neoplasias , Compostos Organoplatínicos/administração & dosagemRESUMO
OBJECTIVES: Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. MATERIALS AND METHODS: This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. RESULTS: A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180&OV0556;, which corresponds to $250 using the current exchange rate. CONCLUSIONS: Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large multicenter cohort. Because of its low cost, it should be considered in the routine evaluation of solid tumors treated with antiangiogenic therapy.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Meios de Contraste , Aumento da Imagem/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fosfolipídeos , Hexafluoreto de Enxofre , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/economia , Meios de Contraste/economia , Feminino , Seguimentos , França , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/economia , Fosfolipídeos/economia , Estudos Prospectivos , Reprodutibilidade dos Testes , Hexafluoreto de Enxofre/economia , Análise de Sobrevida , Resultado do Tratamento , Ultrassonografia , Adulto JovemRESUMO
OBJECTIVES: The objectives of this study are to describe the standardization and dissemination of dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of antiangiogenic treatments in solid tumors across 19 oncology centers in France and to define a quality score to account for the variability of the evaluation criteria used to collect DCE-US data. MATERIALS AND METHODS: This prospective Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) DCE-US study included patients with metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors, renal cell carcinoma and patients with primary hepatocellular carcinoma tumors treated with antiangiogenic therapy. The DCE-US method was made available across 19 oncology centers in France. Overall, 2339 DCE-US examinations were performed by 65 radiologists in 539 patients.One target site per patient was studied. Standardized DCE-US examinations were performed before treatment (day 0) and at days 7, 15, 30, and 60. Dynamic contrast-enhanced ultrasound data were transferred from the different sites to the main study center at the Institut Gustave-Roussy for analysis. Quantitative analyses were performed with a mathematical model to determine 7 DCE-US functional parameters using raw linear data. Radiologists had to evaluate 6 criteria that were potentially linked to the precision of the evaluation of these parameters: lesion size, target motion, loss of target, clear borders, total acquisition of wash-in, and vascular recognition imaging window adapted to the lesion size.Eighteen DCE-US examinations were randomly selected from the Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) database. Each examination was quantified twice by 8 engineers/radiologists trained to evaluate the perfusion parameters. The intraobserver variability was estimated on the basis of differences between examinations performed by the same radiologist. The mean coefficient of variability associated with each quality criterion was estimated. The final quality score, ranging from 0 to 5, was defined according to the value of coefficient of variability for each criterion. RESULTS: A total of 2062 examinations were stored with raw linear data. Five criteria were found to have a major impact on quality: lesion size, motion, loss of target, borders, and total acquisition of wash-in. Only 3% of the examinations were of poor quality (quality of 0); quality was correlated with the radiologists' experience, such that it was significantly higher for radiologists who had performed more than 60 DCE-US examinations (P < 0.0001). CONCLUSIONS: The DCE-US methodology has been successfully provided to several centers across France together with strict rules for quality assessment. Only 3% of examinations carried out at these centers were considered not interpretable.