RESUMO
RATIONALE: Nicotine and cotinine are, respectively, alkaloids produced mainly by the Solanaceae plant family, especially tobacco, and its most important human metabolite. These compounds are frequently found as contaminants in wastewater or landfill samples and they could be used to evaluate pollution by tobacco use. The aim of this study is to improve the knowledge about possible transformation pathways of nicotine and cotinine. This would help the identification of degradants by using HPLC coupled with a high resolving power mass analyzer (LTQ-Orbitrap). In addition, we evaluated toxicity on bioluminescent photobacteria to indicate possible relationships between the formation of transformation products and their toxic effects. METHODS: The transformation of nicotine and cotinine and the formation of intermediate products were evaluated adopting titanium dioxide as photocatalyst. The structural identification of photocatalytic transformation products of these two alkaloids was based on LC/multistage MS experiments. High-resolution MS allowed the elemental composition of these products to be hypothesized. The evolution of toxicity as a function of the irradiation time was also studied using a bioluminescent photobacterium (Vibrio fischeri) test. RESULTS: Several products were formed and characterized using HPLC/HRMSn . The main photocatalytic pathways involving nicotine and cotinine appear to be hydroxylation, demethylation and oxidation. Nine degradants were formed from nicotine, including cotinine. Seven degradants were generated from cotinine. There is no transformation product in common between the two studied molecules. CONCLUSIONS: The study of photocatalytic degradation allowed us to partially simulate human metabolism and the environmental transformation of the bioactive alkaloid nicotine. We searched for some of the identified transformation products in river water and landfill percolate by solid-phase extraction and HPLC/HRMS and eventually their presence was confirmed. These new findings could be of interest in further metabolism and environmental pollution studies. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Aliivibrio fischeri/metabolismo , Cotinina/metabolismo , Nicotina/metabolismo , Aliivibrio fischeri/efeitos da radiação , Biotransformação/efeitos dos fármacos , Catálise/efeitos da radiação , Cotinina/química , Luz , Espectrometria de Massas , Nicotina/química , Nicotiana/químicaRESUMO
In this research, the degradation of seven different micropollutants (MPs) and the formation of their transformation products (TPs) have been assessed during the application of different advanced oxidation processes: photolytic and photocatalytic activation of peroxymonosulfate (PMS) and persulfate (PS). The results were compared with those obtained from the photolytic experiments using hydrogen peroxide (H2O2) as oxidant. A significant abatement of almost all MPs was achieved, even with very low UV-C contact time (9 and 28â¯s). The degradation of atenolol (ATN) and caffeine (CFN) ranged from 84 to 100% with a dose of 0.5â¯mM of any oxidant. The efficiencies for bisphenol-A (BPA), carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBP), and sulfamethoxazole (SMX) varied depending on the oxidation system and operating conditions (oxidant dose and UV-C contact time), leading to the photolysis of PMS to higher efficiencies than PS and H2O2. In all cases, the abatement of MPs ranged from 63 to 83%, even with the lowest PMS dosage. Moreover, the addition of Fe(II) as a catalyst enhanced the removal efficiency, reaching almost total removal, especially over CBZ, DCF, and IBP. The Dissolved Organic Carbon (DOC) removal ranged between 44 and 62%, suggesting the transformation of MPs in intermediate compounds. The identification of transformation products was carried out for each micropollutant and each oxidation treatment, being observed some transformation products specific of oxidation by sulfate radicals. For example, m/z 165.0432 only appeared after PMS/Fe(II)/UV-C on the degradation of BFA, m/z 251.082 appeared after photolytic activation of PMS and PS on CBZ removal, and m/z 128.0452 was observed after any sulfate radical oxidation treatment, but not after photolysis of H2O2.
Assuntos
Peróxido de Hidrogênio/química , Peróxidos/química , Fotólise , Sulfatos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/análise , Atenolol/metabolismo , Compostos Benzidrílicos/metabolismo , Cafeína/metabolismo , Carbamazepina/metabolismo , Catálise , Diclofenaco/metabolismo , Oxidantes/química , Oxirredução , Fenóis/metabolismo , Sulfametoxazol/metabolismo , Sulfatos/análise , Raios UltravioletaRESUMO
S-doped TiO2 and hybrid MoS2/TiO2 systems have been synthesized, via the sulfidation with H2S of the bare TiO2 and of MoOx supported on TiO2 systems, with the aim of enhancing the photocatalytic properties of TiO2 for the degradation of carbamazepine, an anticonvulsant drug, whose residues and metabolites are usually inefficiently removed in wastewater treatment plants. The focus of this study is to find a relationship between the morphology/structure/surface properties and photoactivity. The full characterization of samples reveals the strong effects of the H2S action on the properties of TiO2, with the formation of defects at the surface, as shown by transmission electron microscopy (TEM) and infrared spectroscopy (IR), while also the optical properties are strongly affected by the sulfidation treatment, with changes in the electronic states of TiO2. Meanwhile, the formation of small and thin few-layer MoS2 domains, decorating the TiO2 surface, is evidenced by both high-resolution transmission electron microscopy (HRTEM) and UV-Vis/Raman spectroscopies, while Fourier-transform infrared (FTIR) spectra give insights into the nature of Ti and Mo surface sites. The most interesting findings of our research are the enhanced photoactivity of the MoS2/TiO2 hybrid photocatalyst toward the carbamazepine mineralization. Surprisingly, the formation of hazardous compounds (i.e., acridine derivatives), usually obtained from carbamazepine, is precluded when treated with MoS2/TiO2 systems.