RESUMO
Invariant natural killer T (iNKT) cells, which bear αß-type T-cell antigen-receptors (TCRs), recognize glycolipid antigens in a cluster of differentiation 1d (CD1d)-restricted manner. Regarding these cells, the unique modes of thymic selection and maturation elucidate innateness, irrespective of them also being members of the adaptive immune system as a T-cell. iNKT cells develop and differentiate into NKT1 [interferon γ (IFN-γ)-producing], NKT2 [interleukin 4 (IL-4)/IL-13-producing], or NKT17 (IL-17-producing) subsets in the thymus. After egress, NKT10 (IL-10-producing), follicular helper NKT (NKTfh; IL-21-producing), and regulatory NKT (NKTreg) subsets emerge following stimulation in the periphery. Moreover, iNKT cells have been shown to possess several physiological or pathological roles. iNKT cells exhibit dual alleviating or aggravating roles in experimentally induced immune and/or inflammatory diseases in mice. These findings indicate that the modulation of iNKT cells can be employed for therapeutic use or prevention of human diseases. In this review, we discuss the potential roles of iNKT cells in the development of immune/inflammatory diseases of the cardiovascular system, with emphasis on atherosclerosis, aortic aneurysms, and cardiac remodeling.
Assuntos
Doenças Cardiovasculares , Inflamação , Células T Matadoras Naturais , Humanos , Células T Matadoras Naturais/imunologia , Animais , Doenças Cardiovasculares/imunologia , Inflamação/imunologia , CamundongosRESUMO
Obesity is accompanied by and accelerated with chronic inflammation in adipose tissue, especially visceral adipose tissue (VAT). This low-level inflammation predisposes the host to the development of metabolic disease, most notably type 2 diabetes. We have focused on the capacity of glycolipid-reactive, CD1d-restricted natural killer T (NKT) cells to modulate obesity and its associated metabolic sequelae. We previously reported that CD1d knockout (KO) mice are partially protected against the development of obesity-associated insulin resistance, and these findings were recapitulated in mice with an adipocyte-specific CD1d deficiency, suggesting that NKT cell-adipocyte interactions play a critical role in exacerbating disease. However, many other CD1d-expressing cells contribute to the in vivo responses of NKT cells to lipid antigens. In the present study, we examined the role of CD1d expression by macrophages (MÏ) in the development of obesity-associated metabolic inflammation using LysMcre-cd1d1f/f mice where the CD1d1 gene is disrupted in a MÏ-specific manner. Unexpectedly, these animals contained a higher frequency of T-bet+ CD4+ T cells in VAT with increased production of Th1 cytokines that aggravated VAT inflammation. MÏ from mutant mice displayed increased production of IL-12p40, suggesting M1 polarization. These findings indicate that interactions of CD1d on MÏ with NKT cells play a beneficial role in obesity-associated VAT inflammation and insulin resistance with a sharp contrast to an aggravating role of CD1d in another type of antigen-presenting cell, dendritic cells.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células T Matadoras Naturais , Tecido Adiposo/metabolismo , Animais , Antígenos CD1d , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismoRESUMO
INTRODUCTION: EF-hand Ca2+-binding proteins such as S100 protein family members are recognized by the receptor for advanced glycation end-products (RAGE) and are involved in the pathogenesis of asthma/allergic airway inflammation (AAI). Venestatin, an EF-hand Ca2+-binding protein, which is secreted by the parasitic helminth Strongyloides venezuelensis, binds with RAGE and suppresses RAGE-mediated inflammatory responses after parasite invasion. In this study, we evaluated the effect of venestatin on pathogenesis in a house dust mite (HDM) murine model of asthma/AAI. METHODS: Mice were intranasally treated with HDM, HDM with recombinant venestatin, or HDM with synthetic peptides, which were designed based on the EF-hand Ca2+-binding domain of venestatin. Pro-inflammatory responses in the lungs of mice were assessed. RESULTS: HDM treatment induced inflammatory cell infiltration, phosphorylation of the mitogen-activated protein kinase and inhibitor κB, and production of the cytokines tumor necrosis factor-α and interleukin-5 in the lungs. Co-administration of recombinant venestatin with HDM suppressed these pro-inflammatory responses. Treatment with synthetic peptides reduced inflammatory cell infiltration in a RAGE-dependent manner. CONCLUSION: The EF-hand domain of venestatin may have potential therapeutic benefits in asthma.
Assuntos
Asma , Proteínas de Helminto , Strongyloides , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Proteínas de Helminto/uso terapêutico , Inflamação , Pulmão/metabolismo , Camundongos , Pyroglyphidae , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Strongyloides/químicaRESUMO
The pathophysiology of early-stage hip osteoarthritis (EOA) is not fully understood. Although a previous study in an age-unmatched cohort reported that the number of macrophages was increased in knee EOA compared to late OA (LOA), it remained unclear whether increased macrophages in EOA accurately reflect EOA pathology. We investigated the differences in CD14 expression levels between EOA and LOA using age-unmatched and -matched cohorts. Synovial tissues were obtained from 34 EOA (Tönnis grades 0 and 1) and 80 LOA (Tönnis grades 2 and 3) patients. To correct for differences in demographics between patients with LOA and EOA, we also created propensity score-matched cohorts (16 EOA and 16 LOA). CD14 expression and its association with pain was estimated in LOA and EOA before and after propensity matching. We performed flow cytometry on tissues from the 16 patients, with 8 from each group, to assess for CD14+ subsets in the cells. The CD14 expression in EOA was higher than that in LOA both before and after propensity matching. The proportion of CD14high subsets in EOA was higher than that in LOA. The CD14 expression was associated with pain in EOA before matching. However, no difference was observed between the pain and CD14 expression after matching in EOA. The increased CD14 expression and the proportion of CD14high subsets may be important features associated with hip EOA pathology. To accurately compare early and late OA, the analysis of a propensity score-matched cohort is necessary.
Assuntos
Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/genética , Membrana Sinovial , Articulação do Joelho , Dor , RNA Mensageiro/genéticaRESUMO
Experimental autoimmune uveoretinitis (EAU) in mice provides a useful platform to study the pathogenesis and experimental therapeutics of human uveitis. One often used EAU model employs C57BL/6 (B6) mice sensitized with a peptide residue having 1 to 20 amino acids of human interphotoreceptor retinoid binding protein (hIRBP1-20). The model using the B6 background has permitted a liberal use of genetically engineered strains and has provided insights for understanding uveoretinitis. However, this is usually acute/monophasic and does not represent human uveoretinitis that is characterized as a chronic/recurrent disease. Several chronic/recurrent EAU models have been developed; of these, we employed administration of staphylococcal enterotoxin B (SEB) for relapse in the present study, and found that recurrence was induced at day 24 after primary immunization, which is thought to be the convalescent phase. We reported the activation of invariant natural killer T (iNKT)-cells upon primary immunization of the EAU model mice with the ligand RCAI-56, which was found to mitigate the disease in our previous study. Here, we first attempted to ameliorate EAU in the relapse model using a preventive regimen by activating iNKT cells at the same time relapse induction (day 24) or in a regimen after 3 days of relapse induction (day 27). The preventive as well as post-inductive regimens were successful in reducing histopathological scores by inhibiting the Ag-specific Th17-biased response. Collectively, activation of iNKT cells may be useful to mitigate the relapse response of EAU induced with SEB.
Assuntos
Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Células T Matadoras Naturais/fisiologia , Retinite/prevenção & controle , Uveíte/prevenção & controle , Animais , Doenças Autoimunes/imunologia , Proliferação de Células , Proteínas do Olho/toxicidade , Feminino , Citometria de Fluxo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Retinite/imunologia , Proteínas de Ligação ao Retinol/toxicidade , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Uveíte/imunologiaRESUMO
Uveitis is a sight-threatening intraocular inflammatory disease that accounts for almost 10% of blindness worldwide. NF-κB signaling plays pivotal roles in inflammatory diseases. We have reported that IMD-0354, which inhibits NF-κB signaling via selective blockade of IKK-ß, suppresses inflammation in several ocular disease models. Here, we examined the therapeutic effect of IMD-0354 in an experimental autoimmune uveoretinitis (EAU) model, a well-established animal model for endogenous uveitis in humans. Systemic administration of IMD-0354 significantly suppressed the clinical and histological severity, inflammatory edema, and the translocation of NF-κB p65 into the nucleus of retinas in EAU mice. Furthermore, IMD-0354 treatment significantly inhibited the levels of several Th1/Th17-mediated pro-inflammatory cytokines in vitro. Our current data demonstrate that inhibition of IKKß with IMD-0354 ameliorates inflammatory responses in the mouse EAU model, suggesting that IMD-0354 may be a promising therapeutic agent for human endogenous uveitis.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Benzamidas/uso terapêutico , Quinase I-kappa B/antagonistas & inibidores , Retinite/tratamento farmacológico , Uveíte/tratamento farmacológico , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/biossíntese , Edema/complicações , Edema/patologia , Quinase I-kappa B/metabolismo , Inflamação/complicações , Inflamação/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Retinite/imunologia , Retinite/patologia , Índice de Gravidade de Doença , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Uveíte/imunologia , Uveíte/patologiaRESUMO
BACKGROUND: In 2003, a perinatal helicopter air ambulance service was introduced for remote areas of Wakayama and Mie prefectures, Japan, but its long-term impact on perinatal medicine has not yet been analyzed. METHODS: A retrospective observational study was conducted on helicopter air ambulance cases recorded between January 2003 and December 2016 at Wakayama Medical University Hospital (WMUH). RESULTS: During that period, 61 pregnant mothers were transferred by helicopter air ambulance to WMUH. Between 2003 and 2009, the mean period from transfer to birth was 0.6 weeks, whereas between 2008 and 2016, this increased to 1.6 weeks, and the survival rate of infants born after transfer did not differ significantly (84.2%, 32/38 versus 82.1%, 23/28). Seventy-three neonates were transferred. The number transferred between 2003 and 2009 was 46, whereas this decreased to 27 between 2010 and 2016. The neonatal mortality rate in south Wakayama plus south Mie gradually decreased. The reasons for the longer period from transfer to birth, and the decrease in the rate of very low-birthweight infants after transfer may be due to development in the management of threatened premature labor, and the earlier transfer of such cases by regional obstetricians. The reasons for the decline in neonatal transfer may have included the development of fetal diagnostic techniques and improved efficiency of neonatal ground-transport in the South Wakayama region. CONCLUSION: The helicopter air ambulance is an important form of medical transportation in the south Kii peninsula.
Assuntos
Resgate Aéreo/estatística & dados numéricos , Mortalidade Infantil , Assistência Perinatal/estatística & dados numéricos , Complicações na Gravidez/terapia , Serviços de Saúde Rural/estatística & dados numéricos , Feminino , Hospitais Universitários , Humanos , Lactente , Recém-Nascido , Japão/epidemiologia , Assistência Perinatal/tendências , Gravidez , Complicações na Gravidez/mortalidade , Estudos Retrospectivos , Serviços de Saúde Rural/tendênciasRESUMO
Experimental autoimmune uveoretinitis (EAU) represents an experimental model for human endogenous uveitis, which is caused by Th1/Th17 cell-mediated inflammation. Natural killer T (NKT) cells recognize lipid antigens and produce large amounts of cytokines upon activation. To examine the role of NKT cells in the development of uveitis, EAU was elicited by immunization with a peptide from the human interphotoreceptor retinoid-binding protein (hIRBP1-20) in complete Freund's adjuvant and histopathology scores were evaluated in C57BL/6 (WT) and NKT cell-deficient mice. NKT cell-deficient mice developed more severe EAU pathology than WT mice. When WT mice were treated with ligands of the invariant subset of NKT cells (α-GalCer or RCAI-56), EAU was ameliorated in mice treated with RCAI-56 but not α-GalCer. IRBP-specific Th1/Th17 cytokines were reduced in RCAI-56-treated compared with vehicle-treated mice. Although the numbers of IRBP-specific T cells detected by hIRBP3-13/I-Ab tetramers in the spleen and the draining lymph node were the same for vehicle and RCAI-56 treatment groups, RORγt expression by tetramer-positive cells in RCAI-56-treated mice was lower than in control mice. Moreover, the eyes of RCAI-56-treated mice contained fewer IRBP-specific T cells compared with control mice. These results suggest that invariant NKT (iNKT) cells suppress the induction of Th17 cells and infiltration of IRBP-specific T cells into the eyes, thereby reducing ocular inflammation. However, in sharp contrast to the ameliorating effects of iNKT cell activation during the initiation phase of EAU, iNKT cell activation during the effector phase exacerbated disease pathology. Thus, we conclude that iNKT cells exhibit dual roles in the development of EAU.
Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Células T Matadoras Naturais/imunologia , Retinite/imunologia , Uveíte/imunologia , Animais , Doenças Autoimunes/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/patologia , Retinite/metabolismo , Retinite/patologia , Uveíte/metabolismo , Uveíte/patologiaRESUMO
Natural killer T cells (NKT cells) are comprised of several subsets. However, the possible differences in their developmental mechanisms have not been fully investigated. To evaluate the dependence of some NKT subpopulations on nuclear factor-κB-inducing kinase (NIK) for their generation, we analysed the differentiation of NKT cells, dividing them into subsets in various tissues of alymphoplasia (aly/aly), a mutant mouse strain that lacks functional NIK. The results indicated that the efficient differentiation of both invariant NKT (iNKT) and non-iNKT cells relied on NIK expression in non-haematopoietic cells; however, the dependence of non-iNKT cells was lower than that of iNKT cells. Especially, the differentiation of CD8(+) non-iNKT cells was markedly resistant to the aly mutation. The proportion of two other NKT cell subsets, NK1.1(+) γδ T cells and NK1.1(-) iNKT cells, was also significantly reduced in aly/aly mice, and this defect in their development was reversed in wild-type host mice given aly/aly bone marrow cells. In exerting effector functions, NIK in NKT-αß cells appeared dispensable, as NIK-deficient NKT-αß cells could secrete interleukin-4 or interferon-γ and exhibit cytolytic activity at a level comparable to that of aly/+ NKT-αß cells. Collectively, these results imply that the NIK in thymic stroma may be critically involved in the differentiation of most NKT cell subsets (although the level of NIK dependence may vary among the subsets), and also that NIK in NKT-αß cells may be dispensable for their effector function.
Assuntos
Linfócitos T CD8-Positivos/citologia , Células T Matadoras Naturais/citologia , Proteínas Serina-Treonina Quinases/genética , Subpopulações de Linfócitos T/citologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Interferon gama/metabolismo , Interleucina-15/biossíntese , Interleucina-4/metabolismo , Interleucina-7/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Quinase Induzida por NF-kappaBRESUMO
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and recognizes lipid antigens presented by CD1d-expressing cells. Obesity-associated inflammation in adipose tissue (AT) leads to metabolic dysfunction, including insulin resistance. When cellular communication is properly regulated among AT-residing immune cells and adipocytes during inflammation, a favorable balance of Th1 and Th2 immune responses is achieved. NKT cells play crucial roles in AT inflammation, influencing the development of diet-induced obesity and insulin resistance. NKT cells interact with CD1d-expressing cells in AT, such as adipocytes, macrophages, and dendritic cells, shaping pro-inflammatory or anti-inflammatory microenvironments with distinct characteristics depending on the antigen-presenting cells. Additionally, CD1d may be involved in the inflammatory process independently of NKT cells. In this mini-review, we provide a brief overview of the current understanding of the interaction between immune cells, focusing on NKT cells and CD1d signaling, which control AT inflammation both in the presence and absence of NKT cells. We aim to enhance our understanding of the mechanisms of obesity-associated diseases.
Assuntos
Resistência à Insulina , Células T Matadoras Naturais , Humanos , Tecido Adiposo , Obesidade , InflamaçãoRESUMO
Certain glycolipids have immunomodulatory potential by activating natural killer T (NKT) cells, a unique T cell subset. Invariant NKT (iNKT) cells recognize α-galactosylceramide (α-GalCer) and synthetic derivatives presented by CD1d molecules and secrete large amounts of cytokines that modulate immune functions. Some iNKT cell ligands induce distinct reactions biased toward either Th1 or Th2 immune responses, while others show mixed responses. We describe the methods for activating iNKT cells by the ligands as represented by α-GalCer using in vitro assays, such as cell-free or co-culture with antigen-presenting cells. In addition, α-GalCer/CD1d multimer can be used to specifically detect iNKT cells using flow cytometry. α-GalCer is also utilized to activate systemic iNKT cells in vivo, which leads to the production of high levels of cytokines in sera. Collectively, α-GalCer and its derivatives activate iNKT cells that modulate immune balance, and we need to understand the characteristics of these ligands for developing their utility.
Assuntos
Galactosilceramidas , Células T Matadoras Naturais , Galactosilceramidas/farmacologia , Citocinas , Antígenos CD1d , ImunidadeRESUMO
Major histocompatibility complex (MHC) class Ib molecules present antigens to subsets of T cells primarily involved in host defense against pathogenic microbes and influence the development of immune-mediated diseases. The MHC class Ib molecule MHC-related protein 1 (MR1) functions as a platform to select MR1-restricted T cells, including mucosal-associated invariant T (MAIT) cells in the thymus, and presents ligands to them in the periphery. MAIT cells constitute an innate-like T-cell subset that recognizes microbial vitamin B2 metabolites and plays a defensive role against microbes. In this study, we investigated the function of MR1 in allergic contact dermatitis (ACD) by examining wild-type (WT) and MR1-deficient (MR1-/-) mice in which ACD was induced with 2,4-dinitrofluorobenzene (DNFB). MR1-/- mice exhibited exaggerated ACD lesions compared with WT mice. More neutrophils were recruited in the lesions in MR1-/- mice than in WT mice. WT mice contained fewer MAIT cells in their skin lesions following elicitation with DNFB, and MR1-/- mice lacking MAIT cells exhibited a significant increase in IL-17-producing αß and γδ T cells in the skin. Collectively, MR1-/- mice displayed exacerbated ACD from an early phase with an enhanced type 3 immune response, although the precise mechanism of this enhancement remains elusive.
Assuntos
Dermatite Alérgica de Contato , Antígenos de Histocompatibilidade Classe I , Interleucina-17 , Antígenos de Histocompatibilidade Menor , Animais , Camundongos , Dinitrofluorbenzeno , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-17/metabolismo , Antígenos de Histocompatibilidade Menor/genéticaRESUMO
Recent studies utilizing single-cell analysis have unveiled the presence of various fibroblast (Fb) subsets within the synovium under inflammatory conditions in osteoarthritis (OA), distinguishing them from those in rheumatoid arthritis (RA). Moreover, it has been reported that pain in knee OA patients is linked to specific fibroblast subsets. Single-cell expression profiling methods offer an incredibly detailed view of the molecular states of individual cells. However, one limitation of these methods is that they require the destruction of cells during the analysis process, rendering it impossible to directly assess cell function. In our study, we employ flow cytometric analysis, utilizing cell surface markers CD39 and CD55, in an attempt to isolate fibroblast subsets and investigate their relationship with OA pathology. Synovial tissues were obtained from 25 knee OA (KOA) patients. Of these, six samples were analyzed by RNA-seq (n = 3) and LC/MS analysis (n = 3). All 25 samples were analyzed to estimate the proportion of Fb (CD45-CD31-CD90+) subset by flow cytometry. The proportion of Fb subsets (CD39+CD55- and CD39-CD55+) and their association with osteoarthritis pathology were evaluated. CD39+CD55- Fb highly expressed myogenic markers such as CNN1, IGFBP7, MYH11, and TPM1 compared to CD39-CD55+ Fb. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of upregulated differentially expressed genes (DEGs) in CD39+CD55- Fb identified the Apelin pathway and cGMP-PKC-signaling pathway as possibly contributing to pain. LC/MS analysis indicated that proteins encoded by myogenic marker genes, including CNN1, IGFBP7, and MYH11, were also significantly higher than in CD39-CD55+ Fb. CD39-CD55+ Fb highly expressed PRG4 genes and proteins. Upregulated DEGs were enriched for pathways associated with proinflammatory states ('RA', 'TNF signaling pathway', 'IL-17 signaling pathway'). The proportion of CD39+CD55- Fb in synovium significantly correlated with both resting and active pain levels in knee OA (KOA) patients (resting pain, ρ = 0.513, p = 0.009; active pain, ρ = 0.483, p = 0.015). There was no correlation between joint space width (JSW) and the proportion of CD39+CD55- Fb. In contrast, there was no correlation between the proportion of CD39-CD55+ Fb and resting pain, active pain, or JSW. In conclusion, CD39+CD55- cells exhibit a myofibroblast phenotype, and its proportion is associated with KOA pain. Our study sheds light on the potential significance of CD39+CD55- synovial fibroblasts in osteoarthritis, their myofibroblast-like phenotype, and their association with joint pain. These findings provide a foundation for further research into the mechanisms underlying fibrosis, the impact of altered gene expression on osteoarthritic joints, and potential therapeutic strategies.
RESUMO
Decompression surgery (DS) is a standard treatment for chronic nerve compression injuries; however, the mechanisms underlying its effects remain unclear. Here, we investigated the effects of DS on messenger RNA (mRNA) expression of tumor necrosis factor-α (TNF-α) and T cell recruitment in a rat sciatic nerve (SN) chronic constriction injury (CCI) model. Male Wistar rats were subjected to CCI to establish a model of SN injury (CCI group). DS, in which all ligatures were removed, was performed 3 days after CCI surgery (CCI + dec group). Mechanical sensitivity was assessed using the von Frey test 3, 7, and 14 days after the CCI surgery. Gene expression of Tnfa, Cd3, Cxcl10, and immunolocalization of TNF-α and the pan T cell marker, CD3, was evaluated using quantitative polymerase chain reaction (qPCR) and immunohistochemistry, respectively. In addition, the effects of TNF-α on Cxcl10 expression and CXCL10 protein production were evaluated using qPCR and enzyme-linked immunosorbent assay in SN cell culture. Rats that received DS had significantly higher withdrawal threshold levels than those in the CCI group. In addition, Tnfa, Cd3, and Cxcl10 mRNA expression increased following CCI. DS suppressed this elevated expression, with the CCI + dec group showing significantly reduced expression levels compared to the CCI group. Furthermore, TNF-α induced Cxcl10 expression and CXCL10 protein production in SN cell culture. Therefore, DS reduced TNF-α expression and T cell recruitment in the rat SN CCI model. These observations may partly explain the mechanism underlying the therapeutic effects of DS.
Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Constrição , Descompressão , Hiperalgesia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/metabolismo , Linfócitos T , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Objective: Approximately two-thirds of patients with history of shoulder dislocation may develop osteoarthritis (OA) of the glenohumeral joint. However, the biochemical mechanisms underlying the association between dislocation and OA are largely unknown. This study aimed to investigate macrophage markers and inflammatory cytokine expression associated with shoulder instability (SI) in comparison to rotator cuff tears (RCTs). Design: This study included 30 patients with SI and 30 patients with RCTs. Synovial membrane samples were harvested from the rotator interval during the arthroscopic anatomical repair for both groups. The localization of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and cluster of differentiation (CD) 68 in synovial membranes was determined by immunohistochemistry. Transcript-level expressions of the inflammatory cytokines (TNFA and IL1B) and macrophage markers pan-CD68 and -M1 (CD80 and CD86) were quantified. CD80 and CD86 expression in macrophages from the SI group was confirmed using flow cytometry. Results: TNF-α, IL-1ß, and CD68 were expressed in the synovial lining layer of the synovial tissue in both groups. In addition, the mRNA expressions of TNFA, IL1B, CD68, and CD80 were significantly higher in the SI group compared to the RCT group (P â= â0.012, 0.014, 0.022, 0.003, respectively). In samples from the SI group, 96.3% of CD68+/CD14+ macrophages were CD86-positive, whereas 2.5% of CD68+/CD14+/CD86+ cells were CD80-positive. Conclusions: Patients with SI had higher mRNA levels of TNFA, IL1B, CD68, and CD80 than those with RCTs. These findings may partially explain the biochemical mechanism underlying the frequent development and progression of osteoarthritis in patients with SI.
RESUMO
INTRODUCTION: Studies have identified the presence of M1 and M2 macrophages (MÏ) in injured intervertebral discs (IVDs). However, the origin and polarization-regulatory factor of M2 MÏ are not fully understood. TGF-ß is a regulatory factor for M2 polarization in several tissues. Here, we investigated the source of M2 MÏ and the role of TGF-ß on M2 polarization using a mice disc-puncture injury model. METHODS: To investigate the origin of M2 macrophages, 30 GFP chimeric mice were created by bone marrow transplantation. IVDs were obtained from both groups on pre-puncture (control) and post-puncture days 1, 3, 7, and 14 and CD86 (M1 marker)- and CD206 (M2 marker)-positive cells evaluated by flow cytometry (n = 5 at each time point). To investigate the role of TGF-ß on M2 polarization, TGF-ß inhibitor (SB431542) was also injected on post-puncture days (PPD) 5 and 6 and CD206 expression was evaluated on day 7 by flow cytometry (n = 5) and real time PCR (n = 10). RESULTS: The proportion of CD86+ MÏ within the GFP+ population was significantly increased at PPD 1, 3, 7, and 14 compared to control. CD206-positive cells in GFP-populations were significantly increased on PPD 7 and 14. In addition, the percentage of CD206-positive cells was significantly higher in GFP-populations than in GFP+ populations. TGF-ß inhibitor reduced CD206-positive cells and Cd206 expression at 7 days after puncture. CONCLUSION: Our findings suggest that M2 MÏ following IVD injury may originate from resident MÏ. TGF-ß is a key factor for M2 polarization of macrophages following IVD injury.
Assuntos
Disco Intervertebral , Fator de Crescimento Transformador beta , Animais , Disco Intervertebral/lesões , Disco Intervertebral/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Fator de Crescimento Transformador beta/metabolismoRESUMO
Expression of CD163, a scavenger receptor specifically expressed by monocytes and macrophages, is elevated in the synovial tissue of patients with knee osteoarthritis (OA) compared with healthy controls. However, the association between CD163 expression in the synovium and pain in OA patients is unclear. We investigated the correlation between synovial CD163 expression and resting and active pain levels in patients with hip osteoarthritis (HOA). To investigate the possible contribution of CD163+ subsets to pain pathogenesis, we compared pain-related cytokine expression and M1/M2 macrophage marker expression in CD163+ and CD163- cells. We performed flow cytometric analysis to study the CD163+ cell population. We also examined pain-related cytokine expression and M1/M2 macrophage marker expression on CD163+ CD14high and CD163+ CD14low cells using cell sorting. Synovial CD163 expression significantly correlated with resting pain levels (p = 0.006; R = 0.321), but not active pain levels (p = 0.155; R = 0.169). Expression of the M1 macrophage marker CD80 was significantly higher in CD163+ than CD163- cells (p = 0.010), as was the expression of M2 macrophage markers CD206 and IL10 (CD206, p = 0.014; IL10, p = 0.005), and TNFA and IL1B (TNFA, p = 0.002; IL1B, p = 0.001). TNFA expression was significantly higher in CD163+ CD14low than CD163+ CD14high cells, while IL1B, IL10, and CD206 expression were comparable among these subsets. Our findings suggest that CD163 expression is associated with higher resting pain scores. As TNF-α plays a role in the pain process, CD163+ CD14low cells expressing TNFA may be a potent contributor to the pathogenesis of resting pain in HOA.
Assuntos
Osteoartrite do Quadril , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Biomarcadores/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Osteoartrite do Quadril/metabolismo , Dor/etiologia , Receptores de Superfície CelularRESUMO
In the present study, we examined the role of tumor necrosis factor (TNF) in interleukin (IL)-10 production by dendritic cells (DCs) using bone-marrow derived DCs from wild type (WT) and TNF-α knockout (TNF-α(-/-)) mice. Toll-like receptor (TLR) stimulation induced substantial level of IL-10 production by WT DCs, but significantly low level of IL-10 production by TNF-α(-/-) DCs. In contrast, no significant difference was detected in IL-12 p40 production between WT and TNF-α(-/-) DCs. Addition of TNF-α during TLR stimulation recovered the impaired ability of TNF-α(-/-) DCs for IL-10 production. This recovery appeared to be associated with an activation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/Akt following the TNF-α addition. Blocking these kinases significantly inhibited IL-10 production by TNF-α(-/-) DCs stimulated with TLR ligands plus TNF-α. Thus, TNF-α may be a key molecule to regulate the balance between anti-inflammatory versus inflammatory cytokine production in DCs.
Assuntos
Células Dendríticas/imunologia , Interleucina-10/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Subunidade p40 da Interleucina-12/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genéticaRESUMO
Cysteine proteases (CPs) with N-succinyl-Leu-Tyr-4-methylcoumaryl-7-amide (Suc-LY-MCA) cleavage activity were investigated in green and senescent leaves of spinach. The enzyme activity was separated into two major and several faint minor peaks by hydrophobic chromatography. These peaks were conventionally designated as CP1, CP2 and CP3, according to their order of elution. From the analyses of molecular mass, subunit structure, amino acid sequences and cDNA cloning, CP2 was a monomer complex (SoCP-CPI) (51 kDa) composed of a 41-kDa core protein, SoCP (Spinacia oleracea cysteine protease), and 14-kDa cystatin, a cysteine protease inhibitor (CPI), while CP3 was a trimer complex (SoCP-CPI)(3) (151 kDa) of the same subunits as SoCP-CPI and showed a wider range of specificity toward natural substrates than SoCP-CPI. Trimer (SoCP-CPI)(3) was irreversibly formed from monomers through association. The results of reverse transcription-polymerase chain reaction (RT-PCR) revealed that mRNAs of CPI and SoCP are hardly expressed in green leaves, but they are coordinately expressed in senescent leaves, suggesting that these proteases involve in senescence. Purified recombinant CPI had strong inhibitory activity against trimer SoCP, (SoCP)(3) , which had a cystatin deleted with K(i) value of 1.33 × 10(-9) M. After treatment of the enzyme with a succinate buffer (pH 5) at the most active pH of the enzyme, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and activity analyses showed that cystatin was released from both monomer SoCP-CPI and trimer (SoCP-CPI)(3) complexes with a concomitant activation. Thus, the removal of a cystatin is necessary to activate the enzyme activity.
Assuntos
Senescência Celular/fisiologia , Cistatinas/metabolismo , Cisteína Proteases/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo , Sequência de Aminoácidos , Senescência Celular/genética , Cromatografia de Afinidade , Clonagem Molecular , Cisteína Proteases/química , Cisteína Proteases/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de AminoácidosRESUMO
Background: Bone marrow-derived monocytes/macrophages are recruited into synovial tissue, where they contribute to synovial inflammation in osteoarthritis through inflammatory cytokine production. Recent studies have suggested that V-Set and transmembrane domain-containing 4 (VSTM4) and its fragment, peptide Lv, exhibit immunosuppressive activity on T cells and vascular endothelial growth factor (VEGF)-like activity, respectively. Given that evidence suggests that VEGF may play a role in macrophage function, we investigated peptide Lv-mediated regulation of inflammatory cytokines in bone marrow macrophages (BMMs) and synovial inflammation. Method: To investigate the effects of peptide Lv, BMMs were stimulated with vehicle, LPS, or LPS + peptide Lv, and Tnfa, Il1b, Il6, and Ifng expression were evaluated using quantitative PCR (qPCR). TNF-α and IFN-γ production was measured using ELISA. To examine the effect of peptide Lv deficiency on macrophages and synovitis, peptide Lv-deficient mice were generated using genome editing. LPS-induced Tnfa and Ifng expression and TNF-α and IFN-γ production were evaluated in BMM isolated from wild-type and peptide Lv-deficient mice. Additionally, Tnfa and Ifng expression levels were compared between wild-type and peptide Lv-deficient mice before and after knee injury. Results: Peptide Lv suppressed the LPS-mediated elevation in TNF-α and IFN-γ. LPS stimulation significantly increased TNF-α and IFN-γ production in BMM derived from peptide Lv-deficient mice compared to wild-type mice. Synovial TNF-α expression in the injured knee was elevated in peptide Lv-deficient compared to wild-type mice. Conclusion: Peptide Lv suppressed TNF-α in macrophages and plays a role in synovial inflammation. Thus, peptide Lv may be a useful therapeutic target for synovitis.