RESUMO
Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
Assuntos
Remodelamento Atrial , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Infarto do Miocárdio , Análise de Célula Única , Remodelação Ventricular , Remodelamento Atrial/genética , Estudos de Casos e Controles , Cromatina/genética , Epigenoma , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Tempo , Remodelação Ventricular/genéticaRESUMO
Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.
Assuntos
Diabetes Mellitus Experimental , Antígenos HLA-DQ , Miocardite , Miosite , Neoplasias , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Inibidores de Checkpoint Imunológico/uso terapêutico , Miosite/induzido quimicamente , Miosite/patologiaRESUMO
In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining ß2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived ß cell autoantigen-specific TCRs.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina , Camundongos Transgênicos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
INTRODUCTION: Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS: We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS: Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION: These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Assuntos
Linfócitos B , Infarto do Miocárdio , Miocárdio , Análise de Sequência de RNA , Análise de Célula Única , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Humanos , Animais , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa/genética , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma/genética , Transcrição Gênica , Estudo de Associação Genômica AmplaRESUMO
Our organization, Black in Immuno (@BlackInImmuno), was formed in September 2020 to celebrate, support, and amplify Black voices in immunology when social media campaigns like #BlackInTheIvory illuminated the shared overt and covert issues of systemic racism faced by Black researchers in all facets of science, technology, engineering, art, and mathematics. Black in Immuno was cofounded by a group of Black immunology trainees working at multiple institutions globally: Joël Babdor, E. Evonne Jean, Elaine Kouame, Alexis S. Mobley, Justine C. Noel, and Madina Wane. We devised Black in Immuno Week, held November 22-28, 2020, as a global celebration of Black immunologists. The week was designed to advocate for increased diversity and accessibility in immunology, amplify Black excellence in immunology, and create a community of Black immunologists who can support each other to flourish despite barriers in academia and other job sectors. The week contained live panels and scientific talks, a casual networking mixer, online advocacy and amplification sessions, and a series of wellness events. Our live-streamed programs reached over 300 individuals, and thousands of people kept the conversations going globally using #BlackInImmuno and #BlackInImmunoWeek on social media from five continents. Below, we highlight the events and significant takeaways of the week.
Assuntos
Alergia e Imunologia/ética , População Negra , Sistemas On-Line , Pesquisadores , Sucesso Acadêmico , Alergia e Imunologia/educação , Defesa do Consumidor , Humanos , Redes Sociais Online , Racismo , Inclusão Social , Estados Unidos , Webcasts como AssuntoRESUMO
BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the ß-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.
Assuntos
Apresentação Cruzada , Células Dendríticas/imunologia , Miocárdio/patologia , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/patologia , Humanos , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genéticaRESUMO
Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.
Assuntos
Imunidade Adaptativa , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Transferência Adotiva , Animais , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Fibrose , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Isoproterenol , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Especificidade de Órgãos , Baço/imunologia , Sístole , Linfócitos T Auxiliares-Indutores/imunologia , VasodilataçãoRESUMO
Chronic inflammatory disorders, including rheumatoid arthritis (RA), are associated with a twofold increase in the incidence of sudden cardiac death (SCD) compared with the healthy population. Although this is partly explained by an increased prevalence of coronary artery disease, growing evidence suggests that ischemia alone cannot completely account for the increased risk. The present review explores the mechanisms of cardiac electrophysiological remodeling in response to chronic inflammation in RA. In particular, it focuses on the roles of nonischemic structural remodeling, altered cardiac ionic currents, and autonomic nervous system dysfunction in ventricular arrhythmogenesis and SCD. It also explores whether common genetic elements predispose to both RA and SCD. Finally, it evaluates the potential dual effects of disease-modifying therapy in both diminishing and promoting the risk of ventricular arrhythmias and SCD.
Assuntos
Arritmias Cardíacas/fisiopatologia , Artrite Reumatoide/complicações , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Morte Súbita Cardíaca/etiologia , Humanos , Remodelação VentricularRESUMO
The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Assuntos
Cardiopatias/imunologia , Sistema Imunitário/imunologia , Miocárdio/imunologia , Regeneração , Imunidade Adaptativa , Fatores Etários , Animais , Animais Recém-Nascidos , Fibrose , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/metabolismo , Recém-Nascido , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , CicatrizaçãoRESUMO
The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.
Assuntos
Doenças Transmissíveis/imunologia , Sistema Imunitário/imunologia , Animais , Comunicação Celular , Microambiente Celular , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/fisiopatologia , Homeostase , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Transdução de SinaisRESUMO
Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea) propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9), their inhibitors (TIMP-1 and TIMP-2), and collagen types (Col 1α1 and Col 1α3) in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.
Assuntos
Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Células Mieloides/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Antígenos Ly/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Ecocardiografia , Citometria de Fluxo , Fator de Crescimento Insulin-Like I/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Transgênicos , Monócitos/citologia , Monócitos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Fatores de TempoRESUMO
Regulatory B cells (Breg) have attracted increasing attention for their roles in maintaining peripheral tolerance. Interleukin 33 (IL-33) is a recently identified IL-1 family member, which leads a double-life with both pro- and anti-inflammatory properties. We report here that peritoneal injection of IL-33 exacerbated inflammatory bowel disease in IL-10-deficient (IL-10(-/-)) mice, whereas IL-33-treated IL-10-sufficient (wild type) mice were protected from the disease induction. A phenotypically unconventional subset(s) (CD19(+)CD25(+)CD1d(hi)IgM(hi)CD5(-)CD23(-)Tim-1(-)) of IL-10 producing Breg-like cells (Breg(IL-33)) was identified responsible for the protection. We demonstrated further that Breg(IL-33) isolated from these mice could suppress immune effector cell expansion and functions and, upon adoptive transfer, effectively blocked the development of spontaneous colitis in IL-10(-/-) mice. Our findings indicate an essential protective role, hence therapeutic potential, of Breg(IL-33) against mucosal inflammatory disorders in the gut.
Assuntos
Linfócitos B Reguladores/imunologia , Colite/imunologia , Mucosa Gástrica/efeitos dos fármacos , Interleucina-10/imunologia , Interleucinas/farmacologia , Transferência Adotiva , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B Reguladores/efeitos dos fármacos , Linfócitos B Reguladores/transplante , Colite/genética , Colite/patologia , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Expressão Gênica , Injeções Intraperitoneais , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-33 , Interleucinas/imunologia , Ativação Linfocitária , Camundongos , Camundongos KnockoutRESUMO
Coronary artery disease (CAD) is a major health issue. This study focused on pericardial macrophages and small extracellular vesicles (sEVs) in CAD. The macrophages in CAD patients showed reduced expression of protective markers and unchanged levels of proinflammatory receptors. Similar changes were observed in buffy-coat-derived macrophages when stimulated with CAD pericardial fluid-derived sEVs. The sEV contained miRNA-6516-5p, which inhibited CD36 and affected macrophage lipid uptake. These findings indicate that sEV-mediated miRNA actions contribute to the decrease in protective pericardial macrophages in CAD.
RESUMO
Importance: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures: IgG, IgM and IgA antibody binding to cardiac tissue. Results: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11â¯060 [10â¯223-11â¯858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.
Assuntos
COVID-19 , Miocardite , Adulto , Humanos , Masculino , Criança , Adolescente , Pessoa de Meia-Idade , Miocardite/etiologia , Vacinas contra COVID-19/efeitos adversos , Autoanticorpos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Vacinação , Imunoglobulina G , Imunoglobulina A , Fluoresceínas , Imunoglobulina MRESUMO
Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.
Assuntos
Células Matadoras Naturais/metabolismo , Lectinas Tipo C/genética , Sequência de Aminoácidos , Animais , Humanos , Lectinas Tipo C/química , Dados de Sequência Molecular , Homologia de Sequência de AminoácidosRESUMO
Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome-loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug-loaded liposomes to an inflamed skeletal muscle in mice. A single low-dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome-loaded neutrophils in a human-disease-relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier-loaded neutrophils as a universal platform to deliver anti-inflammatory drugs to promote tissue regeneration in inflammatory diseases.
Assuntos
Músculo Esquelético/metabolismo , Isquemia Miocárdica/metabolismo , Neutrófilos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Lipossomos , CamundongosRESUMO
Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.