Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0264651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749519

RESUMO

Herein we report the use of Chaperonin-Containing TCP-1 (CCT or TRiC) as a marker to detect circulating tumor cells (CTCs) that are shed from tumors during oncogenesis. Most detection methods used in liquid biopsy approaches for enumeration of CTCs from blood, employ epithelial markers like cytokeratin (CK). However, such markers provide little information on the potential of these shed tumor cells, which are normally short-lived, to seed metastatic sites. To identify a marker that could go beyond enumeration and provide actionable data on CTCs, we evaluated CCT. CCT is a protein-folding complex composed of eight subunits. Previously, we found that expression of the second subunit (CCT2 or CCTß) inversely correlated with cancer patient survival and was essential for tumorigenesis in mice, driving tumor-promoting processes like proliferation and anchorage-independent growth. In this study, we examined CCT2 expression in cancer compared to normal tissues and found statistically significant increases in tumors. Because not all blood samples from cancer patients contain detectable CTCs, we used the approach of spiking a known number of cancer cells into blood from healthy donors to test a liquid biopsy approach using CCT2 to distinguish rare cancer cells from the large number of non-cancer cells in blood. Using a clinically validated method for capturing CTCs, we evaluated detection of intracellular CCT2 staining for visualization of breast cancer and small cell lung (SCLC) cancer cells. We demonstrated that CCT2 staining could be incorporated into a CTC capture and staining protocol, providing biologically relevant information to improve detection of cancer cells shed in blood. These results were confirmed with a pilot study of blood from SCLC patients. Our studies demonstrate that detection of CCT2 could identify rare cancer cells in blood and has application in liquid biopsy approaches to enhance the use of minimally invasive methods for cancer diagnosis.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Contagem de Células , Linhagem Celular Tumoral , Chaperonina com TCP-1 , Feminino , Humanos , Camundongos , Células Neoplásicas Circulantes/patologia , Projetos Piloto
2.
Cancer Biol Ther ; 19(10): 887-897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067440

RESUMO

Circulating tumor cells (CTC) enter the blood from many carcinomas and represent a likely source of metastatic dissemination. In contrast to the peripheral circulation, KRAS mutation- positive CTC thrive in the portal venous blood of patients with pancreatic ductal adenocarcinoma (PDAC). To analyze the essential interactions that contribute to carcinoma CTC growth and immune resistance, portal venous blood was collected during pancreatico-duodenectomy in 41 patients with peri-ampullary pathologies (PDAC = 11; ampullary adenocarcinoma (AA) = 15; distal cholangiocarcinoma (CC) = 6; IPMN = 7; non-malignant pancreatitis = 2). FACS-isolated cell populations from the portal circulation were reconstituted ex vivo using mixed cell reaction cultures (MCR). During the first 48hr, PDAC, AA, and CC patient CTC were all highly proliferative (mean 1.7 hr/cell cycle, 61.5% ± 20% growing cells) and resistant to apoptosis (mean 39% ±  25% apoptotic cells). PDAC CTC proliferation and resistance to T cell cytotoxicity were decreased among patients who received pre-operative chemotherapy (p = 0.0019, p = 0.0191, respectively). After 7 days in culture, CTC from PDAC, CC, and AA patients recruited multiple immune cell types, including CD105 + CD14 + myeloid fibroblasts, to organize into spheroid-like clusters. It was only in PDAC and CC-derived MCR that cluster formation promoted CTC survival, growth, and fibroblast differentiation. FACS depletion of CTC or myeloid fibroblast cells eliminated cluster network formation, and re-introduction of these cell populations reconstituted such ability. Our findings suggest that PDAC and CC CTC survival within the portal venous circulation is supported by their interactions with immune cells within multi-cell type clusters that could represent vectors of local recurrence and metastatic progression.


Assuntos
Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Imunomodulação , Células Neoplásicas Circulantes/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Veia Porta/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/terapia , Sobrevivência Celular , Citotoxicidade Imunológica , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
3.
Pancreas ; 46(1): 116-123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27400259

RESUMO

OBJECTIVES: Aggressive spread and liver metastases are predominant features of pancreatic ductal adenocarcinoma (PDAC). This study investigates activation of PDAC circulating tumor cells (CTC) and immunosuppression in the portal venous system. METHODS: Portal venous and peripheral blood were collected during pancreaticoduodenectomy from patients with PDAC (n = 21) or other non-PDAC pancreatic conditions (n = 20). Circulating tumor cells were isolated by fluorescence-activated cell sorting and characterized for messenger RNA (mRNA) expression and acetylated chromatin encoding K-RAS exon 12 mutation (K-RASmut). Myeloid-derived suppressor cells (MDSC) were identified using flow cytometry. RESULTS: Pancreatic ductal adenocarcinoma K-RASmut mRNA expression in portal venous blood CTC was significantly elevated compared with preoperative and postoperative peripheral blood (P = 0.0123 and P = 0.0246, respectively). There was no significant variation in total CTC numbers between portal and peripheral blood.Portal venous M-MDSC were elevated compared with peripheral blood in PDAC patients (P = 0.0065). M-MDSC increases correlated with K-RASmut mRNA-expressing CTC present in PDAC portal blood (P < 0.0001). CONCLUSIONS: Association of MDSC with active CTC in portal venous blood may support immunosuppression within the portal venous circulation to promote PDAC CTC survival.


Assuntos
Circulação Sanguínea , Carcinoma Ductal Pancreático/sangue , Células Neoplásicas Circulantes/metabolismo , Neoplasias Pancreáticas/sangue , Veia Porta , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA