Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27860528

RESUMO

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Assuntos
Células Endoteliais/imunologia , Sistema Imunitário , Imunidade , Sistema Linfático/imunologia , Vasos Linfáticos/fisiologia , Animais , Apresentação de Antígeno , Humanos , Metabolismo dos Lipídeos
2.
Immunity ; 54(12): 2795-2811.e9, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788601

RESUMO

Lymphangitis and the formation of tertiary lymphoid organs (TLOs) in the mesentery are features of Crohn's disease. Here, we examined the genesis of these TLOs and their impact on disease progression. Whole-mount and intravital imaging of the ileum and ileum-draining collecting lymphatic vessels (CLVs) draining to mesenteric lymph nodes from TNFΔARE mice, a model of ileitis, revealed TLO formation at valves of CLVs. TLOs obstructed cellular and molecular outflow from the gut and were sites of lymph leakage and backflow. Tumor necrosis factor (TNF) neutralization begun at early stages of TLO formation restored lymph transport. However, robustly developed, chronic TLOs resisted regression and restoration of flow after TNF neutralization. TNF stimulation of cultured lymphatic endothelial cells reprogrammed responses to oscillatory shear stress, preventing the induction of valve-associated genes. Disrupted transport of immune cells, driven by loss of valve integrity and TLO formation, may contribute to the pathology of Crohn's disease.


Assuntos
Doença de Crohn/imunologia , Células Endoteliais/imunologia , Íleo/imunologia , Linfa/metabolismo , Vasos Linfáticos/imunologia , Mesentério/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ileíte , Linfangite , Camundongos , Camundongos Knockout , Estresse Mecânico
3.
Circ Res ; 130(1): 5-23, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34789016

RESUMO

BACKGROUND: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS: Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS: Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS: VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Vasos Linfáticos/metabolismo , Pericárdio/metabolismo , Transdução de Sinais , Animais , Antígenos CD/genética , Caderinas/genética , Células Cultivadas , Feminino , Humanos , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(11): 2197-2212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767708

RESUMO

BACKGROUND: Lymphatic valves play a critical role in ensuring unidirectional lymph transport. Loss of lymphatic valves or dysfunctional valves are associated with several diseases including lymphedema, lymphatic malformations, obesity, and ileitis. Lymphatic valves first develop during embryogenesis in response to mechanotransduction signaling pathways triggered by oscillatory lymph flow. In blood vessels, eNOS (endothelial NO synthase; gene name: Nos3) is a well-characterized shear stress signaling effector, but its role in lymphatic valve development remains unexplored. METHODS: We used global Nos3-/- mice and cultured human dermal lymphatic endothelial cells to investigate the role of eNOS in lymphatic valve development, which requires oscillatory shear stress signaling. RESULTS: Our data reveal a 45% reduction in lymphatic valve specification cell clusters and that loss of eNOS protein inhibited activation of ß-catenin and its nuclear translocation. Genetic knockout or knockdown of eNOS led to downregulation of ß-catenin target proteins in vivo and in vitro. However, pharmacological inhibition of NO production did not reproduce these effects. Co-immunoprecipitation and proximity ligation assays reveal that eNOS directly binds to ß-catenin and their binding is enhanced by oscillatory shear stress. Finally, genetic ablation of the Foxo1 gene enhanced FOXC2 expression and partially rescued the loss of valve specification in the eNOS knockouts. CONCLUSIONS: In conclusion, we demonstrate a novel, NO-independent role for eNOS in regulating lymphatic valve specification and propose a mechanism by which eNOS directly binds ß-catenin to regulate its nuclear translocation and thereby transcriptional activity.


Assuntos
Vasos Linfáticos , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/genética , Cateninas/metabolismo , Células Cultivadas , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Mecanotransdução Celular/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 314(5): H991-H1010, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351458

RESUMO

We identified a regional dichotomy in murine lymphatic contractile function with regard to vessel location within the periphery or visceral cavity. All vessels isolated from peripheral regions [cervical, popliteal, inguinal, axillary, and internodal inguinal axillary (Ing-Ax)] developed robust contractions with maximal ejection fractions (EFs) of 50-80% in our ex vivo isobaric myograph experiments. Conversely, vessels isolated from the visceral cavity (mesenteric, thoracic duct, and iliac) demonstrated maximal EFs of ≤10%. Using pressure myography, sharp electrode membrane potential recordings, and Ca2+ imaging, we assessed the role of L-type Ca2+ channels in this contractile dichotomy. Ing-Ax membrane potential revealed a ~2-s action potential (AP) cycle (resting -35 mV, spike -5 mV, and plateau -11 mV) with a plateau phase that was significantly lengthened by the L-type Ca2+ channel agonist Bay K8644 (BayK; 100 nM). APs recorded from mesenteric vessels, however, displayed a slower upstroke and an elongated time over threshold. BayK (100 nM) increased the mesenteric AP upstroke velocity and plateau duration but also significantly hyperpolarized the vessel. Contractions of vessels from both regions were preceded by Ca2+ flashes, detected with a smooth muscle-specific endogenous Ca2+ reporter, that typically were coordinated over the length of the vessel. Similar to the membrane potential recordings, Ca2+ flashes in mesenteric vessels were weaker and had a slower rise time but were longer lasting than those in Ing-Ax vessels. BayK (100 nM) significantly increased the Ca2+ transient amplitude and duration in both vessels and decreased time to peak Ca2+ in mesenteric vessels. However, a higher concentration (1 µM) of BayK was required to produce even a modest increase in EF in visceral lymphatics, which remained at <20%. NEW & NOTEWORTHY Lymphatic collecting vessels isolated from murine peripheral tissues, but not from the visceral cavities, display robust contractile behavior similar to lymphatic vessels from other animal models and humans. These differences are partially explained by L-type Ca2+ channel activity as revealed by the first measurements of murine lymphatic action potentials and contraction-associated Ca2+ transients.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Vasos Linfáticos/metabolismo , Contração Muscular , Músculo Liso/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação , Animais , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cinética , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos
6.
Microcirculation ; 25(8): e12502, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178505

RESUMO

OBJECTIVE: Motivated by observations of mesenteries harvested from mice treated with tamoxifen dissolved in oil for inducible gene mutation studies, the objective of this study was to demonstrate that microvascular growth can be induced in the avascular mouse mesentery tissue. METHODS: C57BL/6 mice were administered an IP injection for five consecutive days of: saline, sunflower oil, tamoxifen dissolved in sunflower oil, corn oil, or peanut oil. RESULTS: Twenty-one days post-injection, zero tissues from saline group contained branching microvascular networks. In contrast, all tissues from the three oils and tamoxifen groups contained vascular networks with arterioles, venules, and capillaries. Smooth muscle cells and pericytes were present in their expected locations and wrapping morphologies. Significant increases in vascularized tissue area and vascular density were observed when compared to saline group, but sunflower oil and tamoxifen group were not significantly different. Vascularized tissues also contained LYVE-1-positive and Prox1-positive lymphatic networks, indicating that lymphangiogenesis was stimulated. When comparing the different oils, vascularized tissue area and vascular density of sunflower oil were significantly higher than corn and peanut oils. CONCLUSIONS: These results provide novel evidence supporting that induction of microvascular network growth into the normally avascular mouse mesentery is possible.


Assuntos
Mesentério/irrigação sanguínea , Microvasos/efeitos dos fármacos , Óleos de Plantas/farmacologia , Tamoxifeno/farmacologia , Animais , Linfangiogênese , Mesentério/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/crescimento & desenvolvimento , Neovascularização Fisiológica/efeitos dos fármacos
7.
J Physiol ; 595(24): 7347-7368, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28994159

RESUMO

KEY POINTS: Endothelial cell function in resistance arteries integrates Ca2+ signalling with hyperpolarization to promote relaxation of smooth muscle cells and increase tissue blood flow. Whether complementary signalling occurs in lymphatic endothelium is unknown. Intracellular calcium and membrane potential were evaluated in endothelial cell tubes freshly isolated from mouse collecting lymphatic vessels of the popliteal fossa. Resting membrane potential measured using intracellular microelectrodes averaged ∼-70 mV. Stimulation of lymphatic endothelium by acetylcholine or a TRPV4 channel agonist increased intracellular Ca2+ with robust depolarization. Findings from Trpv4-/- mice and with computational modelling suggest that the initial mobilization of intracellular Ca2+ leads to influx of Ca2+ and Na+ through TRPV4 channels to evoke depolarization. Lymphatic endothelial cells lack the Ca2+ -activated K+ channels present in arterial endothelium to generate endothelium-derived hyperpolarization. Absence of this signalling pathway with effective depolarization may promote rapid conduction of contraction along lymphatic muscle during lymph propulsion. ABSTRACT: Subsequent to a rise in intracellular Ca2+ ([Ca2+ ]i ), hyperpolarization of the endothelium coordinates vascular smooth muscle relaxation along resistance arteries during blood flow control. In the lymphatic vasculature, collecting vessels generate rapid contractions coordinated along lymphangions to propel lymph, but the underlying signalling pathways are unknown. We tested the hypothesis that lymphatic endothelial cells (LECs) exhibit Ca2+ and electrical signalling properties that facilitate lymph propulsion. To study electrical and intracellular Ca2+ signalling dynamics in lymphatic endothelium, we excised collecting lymphatic vessels from the popliteal fossa of mice and removed their muscle cells to isolate intact LEC tubes (LECTs). Intracellular recording revealed a resting membrane potential of ∼-70 mV. Acetylcholine (ACh) increased [Ca2+ ]i with a time course similar to that observed in endothelium of resistance arteries (i.e. rapid initial peak with a sustained 'plateau'). In striking contrast to the endothelium-derived hyperpolarization (EDH) characteristic of arteries, LECs depolarized (>15 mV) to either ACh or TRPV4 channel activation. This depolarization was facilitated by the absence of Ca2+ -activated K+ (KCa ) channels as confirmed with PCR, persisted in the absence of extracellular Ca2+ , was abolished by LaCl3 and was attenuated ∼70% in LECTs from Trpv4-/- mice. Computational modelling of ion fluxes in LECs indicated that omitting K+ channels supports our experimental results. These findings reveal novel signalling events in LECs, which are devoid of the KCa activity abundant in arterial endothelium. Absence of EDH with effective depolarization of LECs may promote the rapid conduction of contraction waves along lymphatic muscle during lymph propulsion.


Assuntos
Sinalização do Cálcio , Endotélio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Potenciais da Membrana , Acetilcolina/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo
8.
J Physiol ; 594(20): 5749-5768, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27219461

RESUMO

A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.


Assuntos
Linfa/fisiologia , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Animais , Humanos , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Pressão
9.
Microcirculation ; 21(7): 575-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123019

RESUMO

In the current issue of Microcirculation, studies by Kurtz et al. and Nizamutdinova et al. together provide new evidence supporting a role for histamine as an endothelial-derived molecule that inhibits lymphatic muscle contraction. In particular, Nizamutdinova et al. show that the effects of flow-induced shear stress on lymphatic endothelium are mediated by both nitric oxide and histamine, since only blockade of both prevents contraction strength and frequency from being altered by flow. Separately, Kurtz et al. used confocal microscopy to determine a preferential expression of histamine receptors on the lymphatic endothelium and demonstrated that histamine applied to spontaneously contracting collecting lymphatics inhibits contractions. Previous studies disagreed on whether histamine stimulates or inhibits lymphatic contractions, but also used differing concentrations, species, and preparations. Together these new reports shed light on how histamine acts within the lymphatic vasculature, but also raise important questions about the cell type on which histamine exerts its effects and the signaling pathways involved. This editorial briefly discusses the contribution of each study and its relevance to lymphatic biology.


Assuntos
Endotélio Linfático/fisiologia , Histamina/fisiologia , Vasos Linfáticos/fisiologia , Óxido Nítrico/fisiologia , Receptores Histamínicos H1/fisiologia , Receptores Histamínicos H2/fisiologia , Animais , Masculino
10.
Blood ; 120(11): 2340-8, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22859612

RESUMO

The lymphatic vasculature preserves tissue fluid balance by absorbing fluid and macromolecules and transporting them to the blood vessels for circulation. The stepwise process leading to the formation of the mammalian lymphatic vasculature starts by the expression of the gene Prox1 in a subpopulation of blood endothelial cells (BECs) on the cardinal vein (CV) at approximately E9.5. These Prox1-expressing lymphatic endothelial cells (LECs) will exit the CV to form lymph sacs, primitive structures from which the entire lymphatic network is derived. Until now, no conclusive information was available regarding the cellular processes by which these LEC progenitors exit the CV without compromising the vein's integrity. We determined that LECs leave the CV by an active budding mechanism. During this process, LEC progenitors are interconnected by VE-cadherin-expressing junctions. Surprisingly, we also found that Prox1-expressing LEC progenitors were present not only in the CV but also in the intersomitic vessels (ISVs). Furthermore, as LEC progenitors bud from the CV and ISVs into the surrounding mesenchyme, they begin expressing the lymphatic marker podoplanin, migrate away from the CV, and form the lymph sacs. Analyzing this process in Prox1-null embryos revealed that Prox1 activity is necessary for LEC progenitors to exit the CV.


Assuntos
Movimento Celular , Vasos Coronários/citologia , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Endotélio Linfático/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Caderinas/metabolismo , Vasos Coronários/embriologia , Vasos Coronários/ultraestrutura , Embrião de Mamíferos/ultraestrutura , Desenvolvimento Embrionário , Células-Tronco Embrionárias/ultraestrutura , Endotélio Linfático/ultraestrutura , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Supressoras de Tumor/genética
11.
PLoS One ; 19(5): e0302926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718095

RESUMO

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.


Assuntos
Proliferação de Células , Células Endoteliais , Proteínas de Homeodomínio , Vasos Linfáticos , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Movimento Celular/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citologia , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Nat Neurosci ; 27(5): 913-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528202

RESUMO

Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.


Assuntos
Líquido Cefalorraquidiano , Canais Iônicos , Vasos Linfáticos , Animais , Camundongos , Líquido Cefalorraquidiano/metabolismo , Hidrocefalia/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Vasos Linfáticos/metabolismo , Mecanotransdução Celular/fisiologia , Meninges/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirazinas , Tiadiazóis , Humanos
13.
J Physiol ; 591(8): 2139-56, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23420659

RESUMO

The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.


Assuntos
Vasos Linfáticos/fisiologia , Óxido Nítrico/fisiologia , Animais , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética
14.
J Physiol ; 591(2): 443-59, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045335

RESUMO

Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (-3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 µm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow.


Assuntos
Linfa/fisiologia , Vasos Linfáticos/fisiologia , Músculo Liso/fisiologia , Animais , Arteríolas/fisiologia , Constrição , Cromakalim/farmacologia , Vasos Linfáticos/anatomia & histologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley
15.
J Physiol ; 591(20): 5071-81, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23897233

RESUMO

Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones released into the bloodstream in response to hypervolaemia or fluid shifts to the central circulation. The actions of both peptides include natriuresis and diuresis, a decrease in systemic blood pressure, and inhibition of the renin-angiotensin-aldosterone system. Further, ANP and BNP elicit increases in blood microvessel permeability sufficient to cause protein and fluid extravasation into the interstitium to reduce the vascular volume. Given the importance of the lymphatic vasculature in maintaining fluid balance, we tested the hypothesis that ANP or BNP (100 nM) would likewise elevate lymphatic permeability (Ps) to serum albumin. Using a microfluorometric technique adapted to in vivo lymphatic vessels, we determined that rat mesenteric collecting lymphatic Ps to rat serum albumin increased by 2.0 ± 0.4-fold (P = 0.01, n = 7) and 2.7 ± 0.8-fold (P = 0.07, n = 7) with ANP and BNP, respectively. In addition to measuring Ps responses, we observed changes in spontaneous contraction amplitude and frequency from the albumin flux tracings in vivo. Notably, ANP abolished spontaneous contraction amplitude (P = 0.005) and frequency (P = 0.006), while BNP augmented both parameters by ∼2-fold (P < 0.01 each). These effects of ANP and BNP on contractile function were examined further by using an in vitro assay. In aggregate, these data support the theory that an increase in collecting lymphatic permeability opposes the absorptive function of the lymphatic capillaries, and aids in the retention of protein and fluid in the interstitial space to counteract volume expansion.


Assuntos
Fator Natriurético Atrial/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Vasos Linfáticos/fisiologia , Contração Muscular/efeitos dos fármacos , Peptídeo Natriurético Encefálico/farmacologia , Animais , Vasos Linfáticos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Albumina Sérica/metabolismo , Albumina Sérica/farmacocinética
16.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37397997

RESUMO

Lymphatic valves are specialized structures of the collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress (OSS) from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves throughout life. Conventionally, in other tissue types, AKT activation requires dual kinase activity and the mammalian target of rapamycin complex 2 (mTORC2) commands this process by phosphorylating AKT at Ser473. Here we showed that embryonic and postnatal lymphatic deletion of Rictor , a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human lymphatic endothelial cells (hdLECs) not only significantly reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions, but also abolished the upregulation of AKT activity and valve-forming genes in response to flow. We further showed that the AKT target, FOXO1, a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric LECs, in vivo . Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in both mesenteric and ear lymphatics. Our work revealed a novel role of RICTOR signaling in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately allows the formation and maintenance of a normal lymphatic valve.

17.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090551

RESUMO

Objective: Lymphatic valves play a critical role in ensuring unidirectional lymph transport. Loss of lymphatic valves or dysfunctional valves are associated with several diseases including lymphedema, lymphatic malformations, obesity, and ileitis. Lymphatic valves first develop during embryogenesis in response to mechanotransduction signaling pathways triggered by oscillatory lymph flow. In blood vessels, eNOS (gene name: Nos3 ) is a well characterized shear stress signaling effector, but its role in lymphatic valve development remains unexplored. Approach and Results: We used global Nos3 -/- mice and cultured hdLECs to investigate the role of eNOS in lymphatic valve development, which requires oscillatory shear stress signaling. Our data reveal a 45% reduction in lymphatic valve specification cell clusters and that loss of eNOS protein inhibited activation of ß-catenin and its nuclear translocation. Genetic knockout or knockdown of eNOS led to downregulation of ß-catenin target proteins in vivo and in vitro . However, pharmacological inhibition of NO production did not reproduce these effects. Coimmunoprecipitation experiments reveal that eNOS forms a complex with ß-catenin and their association is enhanced by oscillatory shear stress. Finally, genetic ablation of the Foxo1 gene enhanced FOXC2 expression and rescued the loss of valve specification in the eNOS knockouts. Conclusion: In conclusion, we demonstrate a novel, nitric oxide-independent role for eNOS in regulating lymphatic valve specification and propose a mechanism by which eNOS forms a complex with ß-catenin to regulate its nuclear translocation and thereby transcriptional activity.

18.
Front Cell Dev Biol ; 11: 1276333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842094

RESUMO

Complex lymphatic anomalies (CLAs) are sporadically occurring diseases caused by the maldevelopment of lymphatic vessels. We and others recently reported that somatic activating mutations in KRAS can cause CLAs. However, the mechanisms by which activating KRAS mutations cause CLAs are poorly understood. Here, we show that KRASG12D expression in lymphatic endothelial cells (LECs) during embryonic development impairs the formation of lymphovenous valves and causes the enlargement of lymphatic vessels. We demonstrate that KRASG12D expression in primary human LECs induces cell spindling, proliferation, and migration. It also increases AKT and ERK1/2 phosphorylation and decreases the expression of genes that regulate the maturation of lymphatic vessels. We show that MEK1/2 inhibition with the FDA-approved drug trametinib suppresses KRASG12D-induced morphological changes, proliferation, and migration. Trametinib also decreases ERK1/2 phosphorylation and increases the expression of genes that regulate the maturation of lymphatic vessels. We also show that trametinib and Cre-mediated expression of a dominant-negative form of MEK1 (Map2k1 K97M) suppresses KRASG12D-induced lymphatic vessel hyperplasia in embryos. Last, we demonstrate that conditional knockout of wild-type Kras in LECs does not affect the formation or function of lymphatic vessels. Together, our data indicate that KRAS/MAPK signaling must be tightly regulated during embryonic development for the proper development of lymphatic vessels and further support the testing of MEK1/2 inhibitors for treating CLAs.

19.
bioRxiv ; 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503058

RESUMO

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of Zmiz1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.

20.
Cell Rep ; 42(7): 112777, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454290

RESUMO

Lymphatic capillaries develop discontinuous cell-cell junctions that permit the absorption of large macromolecules, chylomicrons, and fluid from the interstitium. While excessive vascular endothelial growth factor 2 (VEGFR2) signaling can remodel and seal these junctions, whether and how VEGFR3 can alter lymphatic junctions remains incompletely understood. Here, we use lymphatic-specific Flt4 knockout mice to investigate VEGFR3 signaling in lymphatic junctions. We show that loss of Flt4 prevents specialized button junction formation in multiple tissues and impairs interstitial absorption. Knockdown of FLT4 in human lymphatic endothelial cells results in impaired NOTCH1 expression and activation, and overexpression of the NOTCH1 intracellular domain in Flt4 knockout vessels rescues the formation of button junctions and absorption of interstitial molecules. Together, our data reveal a requirement for VEGFR3 and NOTCH1 signaling in the development of button junctions during postnatal development and may hold clinical relevance to lymphatic diseases with impaired VEGFR3 signaling.


Assuntos
Células Endoteliais , Vasos Linfáticos , Receptor Notch1 , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Camundongos Knockout , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA