Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Med Virol ; 95(8): e29025, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565725

RESUMO

Human papillomaviruses (HPVs) infect the oral and anogenital mucosa and can cause cancer. The high-risk (HR)-HPV oncoproteins, E6 and E7, hijack cellular factors to promote cell proliferation, delay differentiation and induce genomic instability, thus predisposing infected cells to malignant transformation. cAMP response element (CRE)-binding protein 1 (CREB1) is a master transcription factor that can function as a proto-oncogene, the abnormal activity of which is associated with multiple cancers. However, little is known about the interplay between HPV and CREB1 activity in cervical cancer or the productive HPV lifecycle. We show that CREB is activated in productively infected primary keratinocytes and that CREB1 expression and phosphorylation is associated with the progression of HPV+ cervical disease. The depletion of CREB1 or inhibition of CREB1 activity results in decreased cell proliferation and reduced expression of markers of epithelial to mesenchymal transition, coupled with reduced migration in HPV+ cervical cancer cell lines. CREB1 expression is negatively regulated by the tumor suppressor microRNA, miR-203a, and CREB1 phosphorylation is controlled through the MAPK/MSK pathway. Crucially, CREB1 directly binds the viral promoter to upregulate transcription of the E6/E7 oncogenes, establishing a positive feedback loop between the HPV oncoproteins and CREB1. Our findings demonstrate the oncogenic function of CREB1 in HPV+ cervical cancer and its relationship with the HPV oncogenes.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Transição Epitelial-Mesenquimal , Proteínas Repressoras/genética , Oncogenes , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
2.
Gene Ther ; 29(5): 236-246, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34276046

RESUMO

Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.


Assuntos
Dopagem Esportivo , Animais , Dopagem Esportivo/métodos , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transgenes
3.
J Vet Pharmacol Ther ; 45(1): 54-62, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34644412

RESUMO

Paracetamol is a widely used, non-opioid analgesic and antipyretic drug. Scientific evidence suggests that it is an effective pain treatment in equine medicine. However, there is very little published information about the pharmacokinetics of the drug in the horse. The aim of the research was to determine the pharmacokinetics of paracetamol in equine plasma and urine to inform treatment of Thoroughbred racehorses. In this multi-dose study, paracetamol was administered orally at 20 mg/kg to six Thoroughbred horses. Pre- and post-administration urine and plasma samples were collected and analysed using a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Pharmacokinetic analysis of urine and plasma paracetamol clearance profiles was carried out, which enabled the calculation of possible screening limits (SL) that can regulate for a detection time of 120 h. Additionally, an estimation of orthocetamol concentration levels in urine was carried out to investigate any underlying relationship between the para- and ortho-isomers as both were suspected to contribute to basal levels, possibly due to environmental feed sources.


Assuntos
Acetaminofen , Analgésicos não Narcóticos , Administração Oral , Animais , Cromatografia Líquida/veterinária , Cavalos , Espectrometria de Massas em Tandem/veterinária
4.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427604

RESUMO

Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.


Assuntos
Alphapapillomavirus/fisiologia , Transformação Celular Viral , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Alphapapillomavirus/genética , Alphapapillomavirus/patogenicidade , Apoptose , Carcinogênese , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Proliferação de Células , Reprogramação Celular , Epigênese Genética , Genoma Viral , Humanos , Evasão da Resposta Imune , Proteínas Oncogênicas Virais/genética , Domínios PDZ , RNA não Traduzido/genética , Transdução de Sinais , Replicação Viral
5.
Ophthalmology ; 127(5): 668-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081490

RESUMO

PURPOSE: To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations. DESIGN: Retrospective case series from academic referral centers. PARTICIPANTS: Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene. METHODS: Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping. MAIN OUTCOME MEASURES: Clinical characterization of UM patients with germline alterations in known cancer genes. RESULTS: We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively). CONCLUSIONS: The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.


Assuntos
Genes Neoplásicos/genética , Predisposição Genética para Doença/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Neoplasias Uveais/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA de Neoplasias/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Imuno-Histoquímica , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Sequenciamento do Exoma
6.
J Vet Pharmacol Ther ; 43(2): 162-170, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32012314

RESUMO

In equine and racing practice, detomidine and butorphanol are commonly used in combination for their sedative properties. The aim of the study was to produce detection times to better inform European veterinary surgeons, so that both drugs can be used appropriately under regulatory rules. Three independent groups of 7, 8 and 6 horses, respectively, were given either a single intravenous administration of butorphanol (100 µg/kg), a single intravenous administration of detomidine (10 µg/kg) or a combination of both at 25 (butorphanol) and 10 (detomidine) µg/kg. Plasma and urine concentrations of butorphanol, detomidine and 3-hydroxydetomidine at predetermined time points were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The intravenous pharmacokinetics of butorphanol dosed individually compared with co-administration with detomidine had approximately a twofold larger clearance (646 ± 137 vs. 380 ± 86 ml hr-1  kg-1 ) but similar terminal half-life (5.21 ± 1.56 vs. 5.43 ± 0.44 hr). Pseudo-steady-state urine to plasma butorphanol concentration ratios were 730 and 560, respectively. The intravenous pharmacokinetics of detomidine dosed as a single administration compared with co-administration with butorphanol had similar clearance (3,278 ± 1,412 vs. 2,519 ± 630 ml hr-1  kg-1 ) but a slightly shorter terminal half-life (0.57 ± 0.06 vs. 0.70 ± 0.11 hr). Pseudo-steady-state urine to plasma detomidine concentration ratios are 4 and 8, respectively. The 3-hydroxy metabolite of detomidine was detected for at least 35 hr in urine from both the single and co-administrations. Detection times of 72 and 48 hr are recommended for the control of butorphanol and detomidine, respectively, in horseracing and equestrian competitions.


Assuntos
Analgésicos/farmacocinética , Butorfanol/farmacocinética , Cavalos/sangue , Imidazóis/farmacocinética , Condicionamento Físico Animal , Analgésicos/administração & dosagem , Animais , Butorfanol/administração & dosagem , Butorfanol/sangue , Butorfanol/urina , Quimioterapia Combinada , Cavalos/urina , Imidazóis/administração & dosagem , Imidazóis/sangue , Imidazóis/urina , Injeções Intravenosas
8.
Drug Test Anal ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010718

RESUMO

The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.

9.
Drug Test Anal ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217093

RESUMO

FG-4592 is a hypoxia-inducible factor inhibitor that has been approved for therapeutic use in some countries. This class of compounds can increase the oxygen carrying capacity of the blood and thus have the potential to be used as performance enhancing agents in sports. The purpose of this study was to investigate the detection of FG-4592 and metabolites in equine plasma and mane hair following a multiple dose oral administration to two Thoroughbred racehorses, to identify the best analytical targets for doping control laboratories. Urine samples were also analysed, and the results compared to previously published urine data. Liquid chromatography-high resolution mass spectrometry was used for metabolite identification in urine and plasma. Liquid chromatography-tandem mass spectrometry was used for full sample analysis of urine, plasma and hair samples and generation of urine and plasma profiles. FG-4592 and a mono-hydroxylated metabolite were detected in plasma. FG-4592 was detected with the greatest abundance and gave the longest duration of detection, up to 312 h post-administration, and would be the recommended target in routine doping samples. FG-4592 was detected in all mane hair samples collected post-administration, up to 166 days following the final dose, showing extended detection can be achieved with this matrix. To the best of the authors' knowledge, this is the first report of FG-4592 and metabolites in equine plasma and hair samples. Urine results were consistent with the previously published data, with FG-4592 offering the best target for detection and longest detection periods.

10.
Drug Test Anal ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234065

RESUMO

Methandienone is an anabolic-androgenic steroid that is prohibited in equine sports due to its potential performance enhancing properties. Metabolism and detection of methandienone in equine urine have been investigated comprehensively in literature; however, there is a limited knowledge about its metabolites in equine plasma and no information about its detection in equine hair. Following a multi-dose oral administration of methandienone to two Thoroughbred horses, 17-epimethandienone, methyltestosterone, two mono-hydroxylated, two di-hydroxylated and three 17α-methylandrostanetriol metabolites were detected in plasma. The majority of these were present as free analytes, whilst the mono-hydroxylated metabolites and one isomer of 17α-methylandrostanetriol were partially conjugated. Estimated peak concentrations of methandienone were 6,000 and 11,100 pg/ml; meanwhile, they were 25.4 and 40.5 pg/ml for methyltestosterone. The most abundant analyte in the post-administration plasma samples of both horses was the mono-hydroxylated metabolite; however, the parent compound provided the longest detection (up to 96 h). Screening analysis of hair enabled the detection of methandienone in mane hair samples only, for up to 3 months. Its mono- and di-hydroxylated metabolites were detected with greater peak responses for up to 6 months post-administration in both mane and tail samples, showing that these metabolites could be better analytical targets for hair analysis when administered orally. A follow-up methodology with an extensive wash procedure confirmed the presence of methandienone and its metabolites in a number of post-administration hair samples. Final wash samples were also analysed to assess the degree of internal incorporation (via bloodstream) against possible external deposition (via sweat/sebum).

11.
Drug Test Anal ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982651

RESUMO

S-23 is an arylpropionamide selective androgen receptor modulator that has been investigated in animal models for use as a male hormonal contraceptive but is not yet available therapeutically. S-23 is available alongside other selective androgen receptor modulators (SARMs) to purchase online via uncontrolled sites, sold as supplement products. It has been detected in several human doping cases, highlighting the importance of identifying the best analytical targets for equine doping control. The purpose of this study was to investigate the detection of S-23 and its phase I metabolites in equine urine and plasma following a multiple dose oral administration to two Thoroughbred racehorses. Liquid chromatography-high resolution mass spectrometry was used for metabolite identification, and liquid chromatography-tandem mass spectrometry was used for full sample analysis and generation of urine and plasma profiles. S-23 and seven phase I metabolites were observed in urine following enzyme hydrolysis and solvolysis. The most abundant analyte detected was the hydroxylated 4-amino-2-(trifluoromethyl)benzonitrile metabolite, which also allowed the longest duration of detection in urine from both horses, for up to 360 h following administration. The data suggest that this metabolite was likely to be highly conjugated with both sulphate and glucuronide moieties. In plasma, S-23 and two phase I metabolites were observed. S-23 was the most abundant analyte detected for both horses, allowing detection for up to 143 h post-administration. To the best of the authors' knowledge, this is the first report of S-23 and metabolites in equine urine and plasma samples.

12.
Drug Test Anal ; 16(2): 112-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37264746

RESUMO

Boldenone is an anabolic-androgenic steroid (AAS) that is prohibited in equine sports. However, in certain situations, it is endogenous, potentially formed by the microbes in urine. An approach to the differentiation based on the detection of the biomarkers Δ1-progesterone, 20(S)-hydroxy-Δ1-progesterone and 20(S)-hydroxyprogesterone was assessed, and their concentrations were monitored in the urine of untreated female horses (n = 291) alongside boldenone, boldienone, testosterone and androstenedione. Using an ultra-sensitive analytical method, boldenone (256 ± 236 pg/mL, n = 290) and the biomarkers (Δ1-progesterone up to 57.6 pg/mL, n = 8; 20(S)-hydroxy-Δ1-progesterone 85.3 ± 181 pg/mL, n = 130; 20(S)-hydroxyprogesterone 43.5 ± 92.1 pg/mL, n = 158) were detected at low concentrations. The ex vivo production of Δ1-steroids was artificially induced following the storage of urine samples at room temperature for 7 days in order to assess the concentrations and ratios of the monitored steroids. The administration of inappropriately stored feed source also resulted in an increase in 20(S)-hydroxy-Δ1-progesterone concentrations and the biomarker ratios. Using the results from different datasets, an approach to differentiation was developed. In situations where the presence of boldenone exceeds a proposed action limit of 5 ng/mL, the presence of the biomarkers would be investigated. If Δ1-progesterone is above 50 pg/mL or if 20(S)-hydroxy-Δ1-progesterone is above 100 pg/mL with the ratio of 20(S)-hydroxy-Δ1-progesterone:20(S)-hydroxyprogesterone greater than 5:1, then this would indicate ex vivo transformation or consumption of altered feed rather than steroid administration. There remains a (small) possibility of a false negative result, but the model increases confidence that adverse analytical findings reported in female horses are caused by AAS administrations.


Assuntos
Anabolizantes , Dopagem Esportivo , Cavalos , Animais , Feminino , Progesterona , Anabolizantes/urina , Testosterona/urina , Esteroides , Hidroxiprogesteronas , Biomarcadores
13.
Nat Commun ; 15(1): 5809, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987584

RESUMO

Human papillomaviruses (HPVs) cause most cervical cancers and an increasing number of anogenital and oral carcinomas, with most cases caused by HPV16 or HPV18. HPV hijacks host signalling pathways to promote carcinogenesis. Understanding these interactions could permit identification of much-needed therapeutics for HPV-driven malignancies. The Hippo signalling pathway is important in HPV+ cancers, with the downstream effector YAP playing a pro-oncogenic role. In contrast, the significance of its paralogue TAZ remains largely uncharacterised in these cancers. We demonstrate that TAZ is dysregulated in a HPV-type dependent manner by a distinct mechanism to that of YAP and controls proliferation via alternative cellular targets. Analysis of cervical cancer cell lines and patient biopsies revealed that TAZ expression was only significantly increased in HPV18+ and HPV18-like cells and TAZ knockdown reduced proliferation, migration and invasion only in HPV18+ cells. RNA-sequencing of HPV18+ cervical cells revealed that YAP and TAZ have distinct targets, suggesting they promote carcinogenesis by different mechanisms. Thus, in HPV18+ cancers, YAP and TAZ play non-redundant roles. This analysis identified TOGARAM2 as a previously uncharacterised TAZ target and demonstrates its role as a key effector of TAZ-mediated proliferation, migration and invasion in HPV18+ cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Via de Sinalização Hippo , Papillomavirus Humano 18 , Infecções por Papillomavirus , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Neoplasias do Colo do Útero , Proteínas de Sinalização YAP , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Sinalização YAP/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transativadores/metabolismo , Transativadores/genética , Carcinogênese/genética
14.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293147

RESUMO

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.

15.
Oncogene ; 43(28): 2184-2198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789663

RESUMO

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Proteínas do Citoesqueleto , Proteínas com Domínio LIM , MicroRNAs , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , MicroRNAs/genética , Humanos , Feminino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
16.
Drug Test Anal ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092431

RESUMO

Detection of doping with steroids that are also endogenous in the horse can be challenging, and a variety of approaches to distinguish exogenous administration from their natural presence are employed. Knowledge of endogenous concentrations of various steroids in different genders of horses (intact male, castrated male and female) and factors that could naturally affect them is beneficial for establishing ways for detection of their use. The current internationally adopted approaches include concentration-based thresholds in urine and plasma, steroid ratios in urine and targeting the administered intact steroid esters in plasma and hair. However, these have their limitations, and therefore, other strategies, such as additional biomarkers and steroid profiling based on longitudinal testing and multivariate analysis, have been investigated and could potentially improve detection of the use of endogenous steroids in horses. This paper aims to provide a comprehensive overview of the steroids (androgens, oestrogens and progestogens) that have been reported to be endogenous to horses in literature, their concentration ranges in different genders and factors potentially affecting them as well as current and possible future approaches to detect their use.

17.
Drug Test Anal ; 15(4): 388-407, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36519889

RESUMO

YK-11 is a steroidal selective androgen receptor modulator, a compound class prohibited in both equine racing and human sports because of their potentially performance enhancing properties. YK-11 is easily accessible via internet-based supplement vendors making this compound a possible candidate for doping; however, its phases I and II metabolism has not yet been reported in the horse. The purpose of this study was to investigate the in vivo metabolites of YK-11 in urine and plasma following oral administration with three daily doses of 50 mg to two Thoroughbred horses. In vitro incubations with equine liver microsomes/S9 were also performed for use as metabolite reference materials; however, this resulted in the formation of 79 metabolites with little overlap with the in vivo metabolism. In plasma, parent YK-11 and seven phase I metabolites were detected, with five of them also observed in vitro. They were present nonconjugated in plasma, with one metabolite also indicating some glucuronide conjugation. In urine, 11 phase I metabolites were observed, with four of them also observed in vitro and six of them also detected in plasma. Nine metabolites were excreted non-conjugated in urine, with two of them also indicating some sulfate conjugation. Two minor metabolites were detected solely as sulfate conjugates. The most abundant analytes in urine were a mono-O-demethylated breakdown product and di-O-demethylated YK-11. The most abundant analytes in plasma were two isomers of the breakdown product with an additional hydroxylation reaction, which also provided the longest detection time in both matrices.


Assuntos
Líquidos Corporais , Dopagem Esportivo , Humanos , Cavalos , Animais , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Líquidos Corporais/metabolismo , Antagonistas de Androgênios , Administração Oral
18.
Oncogene ; 42(34): 2558-2577, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443304

RESUMO

Persistent infection with high-risk human papillomaviruses (HPVs) is the causal factor in multiple human malignancies, including >99% of cervical cancers and a growing proportion of oropharyngeal cancers. Prolonged expression of the viral oncoproteins E6 and E7 is necessary for transformation to occur. Although some of the mechanisms by which these oncoproteins contribute to carcinogenesis are well-characterised, a comprehensive understanding of the signalling pathways manipulated by HPV is lacking. Here, we present the first evidence to our knowledge that the targeting of a host ion channel by HPV can contribute to cervical carcinogenesis. Through the use of pharmacological activators and inhibitors of ATP-sensitive potassium ion (KATP) channels, we demonstrate that these channels are active in HPV-positive cells and that this activity is required for HPV oncoprotein expression. Further, expression of SUR1, which forms the regulatory subunit of the multimeric channel complex, was found to be upregulated in both HPV+ cervical cancer cells and in samples from patients with cervical disease, in a manner dependent on the E7 oncoprotein. Importantly, knockdown of SUR1 expression or KATP channel inhibition significantly impeded cell proliferation via induction of a G1 cell cycle phase arrest. This was confirmed both in vitro and in in vivo tumourigenicity assays. Mechanistically, we propose that the pro-proliferative effect of KATP channels is mediated via the activation of a MAPK/AP-1 signalling axis. A complete characterisation of the role of KATP channels in HPV-associated cancer is now warranted in order to determine whether the licensed and clinically available inhibitors of these channels could constitute a potential novel therapy in the treatment of HPV-driven cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Fator de Transcrição AP-1 , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/fisiologia , Proteínas E7 de Papillomavirus/genética , Proliferação de Células , Carcinogênese , Trifosfato de Adenosina
19.
Drug Test Anal ; 14(6): 1017-1025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34994083

RESUMO

The misuse of gene therapy by the introduction of transgenes via plasmid or viral vectors as a doping agent is an increasing concern in human and animal sports, not only in consideration to fair competition but also in potential detrimental effects to welfare. Doping events can be detected by polymerase chain reaction (PCR) amplification of a transgene-specific region of DNA. Quantitative real-time PCR (qPCR) is particularly suited to confirmatory investigations where precise limits of detection can be calculated. To fully validate a qPCR experiment, it is highly desirable to confirm the identity of the amplicon. Although post-PCR techniques such as melt curve and fragment size analysis can provide strong evidence that the amplicon is as expected, sequence identity confirmation may be beneficial as part of regulatory proceedings. We present here our investigation into two alternative processes for the direct assessment of qPCR products for five genes using next-generation sequencing: ligation of sequence-ready adapters to qPCR products and qPCR assays performed with primers tailed with Illumina flow cell binding sites. To fully test the robustness of the techniques at concentrations required for gene doping detection, we also calculated a putative limit of detection for the assays. Both ligated adapters and tailed primers were successful in producing sequence data for the qPCR products without further amplification. Ligated adapters are preferred, however, as they do not require re-optimisation of existing qPCR assays.


Assuntos
Dopagem Esportivo , Animais , DNA , Primers do DNA , Cavalos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transgenes
20.
Drug Test Anal ; 14(5): 887-901, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178884

RESUMO

Boldenone is an anabolic-androgenic steroid that is prohibited in equine sports. However, in certain situations, it is endogenous or is believed to be formed by microbes in urine, and therefore, an approach for the differentiation is required. Following the identification of Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone as potential biomarkers of microbial activity, the presence of six steroids was investigated in the postrace urine of castrated male horses (geldings, n = 158). In line with endogenous findings from several other species when ultrasensitive methods are employed, boldenone was detected at low concentrations in all urine samples (27.0-1330 pg/ml). Furthermore, testosterone and androstenedione were detected in 157 samples (≤12,400 and 944 pg/ml, respectively), boldienone in two samples (≤22.0 pg/ml) and 20(S)-hydroxy-Δ1-progesterone in 20 samples (≤66.0 pg/ml). Δ1-Progesterone was not detected in any population samples analysed on arrival at the laboratory. The ex vivo transformation of boldienone, boldenone, androstenedione, Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone was induced following the storage of urine samples at room temperature for 7 days but not after refrigeration. Because the administration of inappropriately stored feed sources also resulted in an increase in 20(S)-hydroxy-Δ1-progesterone concentrations, a biomarker approach to distinguish steroid administrations was proposed. In situations where the presence of boldenone would exceed a proposed action limit, the presence of Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone would be investigated. If either Δ1-progesterone or 20(S)-hydroxy-Δ1-progesterone would exceed 50 and 100 pg/ml, respectively, for instance, then this would indicate ex vivo transformation or consumption of altered feed rather than steroid administration.


Assuntos
Anabolizantes , Dopagem Esportivo , Anabolizantes/urina , Androgênios , Androstenodiona , Animais , Cavalos , Masculino , Progesterona , Esteroides , Testosterona/análogos & derivados , Testosterona/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA