Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Haematologica ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779721

RESUMO

Although checkpoint molecules like CTLA-4 and PD1 have been described several years ago, checkpoint inhibitors such as Nivolumab (an anti-PD-1 antibody) have only recently been used to treat classic Hodgkin lymphoma (cHL). Several studies have shown convincing therapeutic effects of Nivolumab in cHL. However, the mechanism of action of Nivolumab in cHL is not fully understood. The aim of this study was to monitor changes in cell motility and cell contacts after administration of Nivolumab to an in vitro model of cHL as well as to native hyperplastic lymphoid tissue and native human tissue from cHL. In both tissue and in vitro, CD4+, CD8+, CD30+ and CD20+ cell velocities were unchanged after Nivolumab incubation. In contrast, in primary cHL tissue, the duration of cell contacts between CD4+ T cells and HRS cells was significantly increased after 5 h Nivolumab treatment, and the number of contacts with HRS cells was also slightly increased for CD4+ T cells (not significant), suggesting that CD4+ T cells in particular contribute to the cytotoxicity observed as a result of Nivolumab therapy. There was no change in the duration of cell contacts in the hyperplastic lymphoid tissue after Nivolumab incubation. In conclusion, we show here for the first time by imaging of native lymphoma tissue an enhanced interaction of CD4+ T cells and HRS cells in cHL after Nivolumab administration.

3.
J Med Internet Res ; 26: e53991, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386376

RESUMO

BACKGROUND: The use of eHealth technology in cardiac rehabilitation (CR) is a promising approach to enhance patient outcomes since adherence to healthy lifestyles and risk factor management during phase III CR maintenance is often poorly supported. However, patients' needs and expectations have not been extensively analyzed to inform the design of such eHealth solutions. OBJECTIVE: The goal of this study was to provide a detailed patient perspective on the most important functionalities to include in an eHealth solution to assist them in phase III CR maintenance. METHODS: A guided survey as part of a Living Lab approach was conducted in Germany (n=49) and Spain (n=30) involving women (16/79, 20%) and men (63/79, 80%) with coronary artery disease (mean age 57 years, SD 9 years) participating in a structured center-based CR program. The survey covered patients' perceived importance of different CR components in general, current usage of technology/technical devices, and helpfulness of the potential features of eHealth in CR. Questionnaires were used to identify personality traits (psychological flexibility, optimism/pessimism, positive/negative affect), potentially predisposing patients to acceptance of an app/monitoring devices. RESULTS: All the patients in this study owned a smartphone, while 30%-40% used smartwatches and fitness trackers. Patients expressed the need for an eHealth platform that is user-friendly, personalized, and easily accessible, and 71% (56/79) of the patients believed that technology could help them to maintain health goals after CR. Among the offered components, support for regular physical exercise, including updated schedules and progress documentation, was rated the highest. In addition, patients rated the availability of information on diagnosis, current medication, test results, and risk scores as (very) useful. Of note, for each item, except smoking cessation, 35%-50% of the patients indicated a high need for support to achieve their long-term health goals, suggesting the need for individualized care. No major differences were detected between Spanish and German patients (all P>.05) and only younger age (P=.03) but not sex, education level, or personality traits (all P>.05) were associated with the acceptance of eHealth components. CONCLUSIONS: The patient perspectives collected in this study indicate high acceptance of personalized user-friendly eHealth platforms with remote monitoring to improve adherence to healthy lifestyles among patients with coronary artery disease during phase III CR maintenance. The identified patient needs comprise support in physical exercise, including regular updates on personalized training recommendations. Availability of diagnoses, laboratory results, and medications, as part of a mobile electronic health record were also rated as very useful. TRIAL REGISTRATION: ClinicalTrials.gov NCT05461729; https://clinicaltrials.gov/study/NCT05461729.


Assuntos
Reabilitação Cardíaca , Doença da Artéria Coronariana , Telemedicina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Transversais , Alemanha , Motivação , Espanha , Idoso
4.
Microvasc Res ; 148: 104551, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201676

RESUMO

BACKGROUND: Post COVID-19 syndrome (PCS) is a complex condition with partly substantial impact on patients' social and professional life and overall life quality. Currently, the underlying cause(s) of PCS are unknown. Since PCS-specific symptoms could be associated with systemic alterations in tissue oxygen supply, we aimed to investigate changes in tissue oxygenation in patients with PCS. METHODS: A case-control study including 30 PCS patients (66.6 % males, 48.6 ± 11.2 years, mean time after (first) acute infection: 324 days), 16 cardiologic patients (CVD) (65.5 % males, 56.7 ± 6.3 years) and 11 young healthy controls (55 % males, 28.5 ± 7.4 years) was conducted. Near infrared spectroscopy (NIRS) was used to assess changes in tissue oxygenation during an arterial occlusion protocol on the non-dominant forearm (brachioradialis, 760/850 nm, 5 Hz). The protocol included 10-min rest, a 2-min baseline measurement followed by a 3-min ischemic period (upper-arm cuff, 50 mmHg above resting systolic blood pressure) and a 3-min reoxygenation period. PCS patients were grouped by presence of arterial hypertension and elevated BMI to assess the impact of risk factors. RESULTS: No differences in mean tissue oxygenation in the pre-occlusion phase existed between groups (p ≥ 0.566). During ischemia, comparisons of linear regressions slopes revealed slower oxygen desaturation for PCS patients (-0.064 %/s) compared to CVD patients (-0.08 %/s) and healthy subjects (-0.145 %/s) (p < 0.001). After cuff release, slowest speed for reoxygenation was detected in PCS patients at 0.84 %/s compared to CVD patients (1.04 %/s) and healthy controls (CG: 2.07 %/s) (p < 0.001). The differences between PCS patients and CVD patients during ischemia remained significant also after correction for risk factors. Analyses of complications during acute infection, persistence of PCS symptoms (time after acute infection), or PCS severity (number of lead symptoms) as confounding factors did not reveal a significant effect. CONCLUSIONS: This study provides evidence that the rate of tissue oxygen consumption is persistently altered in PCS and that PCS patients show an even slower decline in tissue oxygenation during occlusion than CVD patients. Our observations may at least partly explain PCS-specific symptoms such as physical impairment and fatigue.


Assuntos
COVID-19 , Doenças Vasculares , Masculino , Humanos , Feminino , Síndrome de COVID-19 Pós-Aguda , Estudos de Casos e Controles , COVID-19/diagnóstico , Oxigênio , Músculo Esquelético/metabolismo , Isquemia , Consumo de Oxigênio/fisiologia
5.
Environ Res ; 208: 112678, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999031

RESUMO

Lakes are important methane (CH4) sources to the atmosphere, especially eutrophic lakes with cyanobacterial blooms accompanied by volatile sulfur compound (VSC) emissions. CH4 oxidation is a key strategy to mitigate CH4 emission from lakes. In this study, we characterized the fate of CH4-derived carbon and active microbial communities in lake sediments with CS2 used as a typical VSC, based on the investigation of CH4 and VSC fluxes from Meiliang Bay in Lake Taihu. Stable isotope probing microcosm incubation showed that the efficiency of CH4-derived carbon incorporated into organic matter was 21.1% in the sediment with CS2 existence, which was lower than that without CS2 (27.3%). SO42--S was the main product of CS2 oxidation under aerobic condition, accounting for 59.3-62.7% of the input CS2-S. CS2 and CH4 coexistence led to a decrease of methanotroph and methylotroph abundances and stimulated the production of extracellular polymeric substances. CS2 and its metabolites including total sulfur, SO42- and acid volatile sulfur acted as the main drivers influencing the active microbial community structure in the sediments. Compared with α-proteobacteria methanotrophs, γ-proteobacteria methanotrophs Methylomicrobium, Methylomonas, Crenothrix and Methylosarcina were more dominant in the sediments. CH4-derived carbon mainly flowed into methylotrophs in the first stage. With CH4 consumption, more CH4-derived carbon flowed into non-methylotrophs. CS2 could prompt more CH4-derived carbon flowing into non-methanotrophs and non-methylotrophs, such as sulfur-metabolizing bacteria. These findings can help elucidate the influence of VSCs on microorganisms and provide insights to carbon fluxes from eutrophic lake systems.


Assuntos
Cianobactérias , Lagos , Carbono/metabolismo , Ciclo do Carbono , Cianobactérias/metabolismo , Lagos/microbiologia , Metano
6.
Environ Microbiol ; 23(10): 6309-6327, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523801

RESUMO

Carbon monoxide (CO) is both a ubiquitous atmospheric trace gas and an air pollutant. While aerobic CO-degrading microorganisms in soils and oceans are estimated to remove ~370 Tg of CO per year, the presence of CO-degrading microorganisms in above-ground habitats, such as the phyllosphere, and their potential role in CO cycling remains unknown. CO-degradation by leaf washes of two common British trees, Ilex aquifolium and Crataegus monogyna, demonstrated CO uptake in all samples investigated. Based on the analyses of taxonomic and functional genes, diverse communities of candidate CO-oxidizing taxa were identified, including members of Rhizobiales and Burkholderiales which were abundant in the phyllosphere at the time of sampling. Based on predicted genomes of phyllosphere community members, an estimated 21% of phyllosphere bacteria contained CoxL, the large subunit of CO-dehydrogenase. In support of this, data mining of publicly available phyllosphere metagenomes for genes encoding CO-dehydrogenase subunits demonstrated that, on average, 25% of phyllosphere bacteria contained CO-dehydrogenase gene homologues. A CO-oxidizing Phyllobacteriaceae strain was also isolated from phyllosphere samples which contains genes encoding both CO-dehydrogenase as well as a ribulose-1,5-bisphosphate carboxylase-oxygenase. These results suggest that the phyllosphere supports diverse and potentially abundant CO-oxidizing bacteria, which are a potential sink for atmospheric CO.


Assuntos
Bactérias , Árvores , Ecossistema , Oxirredução , Filogenia , Árvores/microbiologia
7.
Biol Chem ; 402(8): 991-999, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34261206

RESUMO

Human lymph nodes play a central part of immune defense against infection agents and tumor cells. Lymphoid follicles are compartments of the lymph node which are spherical, mainly filled with B cells. B cells are cellular components of the adaptive immune systems. In the course of a specific immune response, lymphoid follicles pass different morphological differentiation stages. The morphology and the spatial distribution of lymphoid follicles can be sometimes associated to a particular causative agent and development stage of a disease. We report our new approach for the automatic detection of follicular regions in histological whole slide images of tissue sections immuno-stained with actin. The method is divided in two phases: (1) shock filter-based detection of transition points and (2) segmentation of follicular regions. Follicular regions in 10 whole slide images were manually annotated by visual inspection, and sample surveys were conducted by an expert pathologist. The results of our method were validated by comparing with the manual annotation. On average, we could achieve a Zijbendos similarity index of 0.71, with a standard deviation of 0.07.


Assuntos
Linfonodos , Algoritmos , Humanos
8.
PLoS Comput Biol ; 16(1): e1007516, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961873

RESUMO

In pathology, tissue images are evaluated using a light microscope, relying on the expertise and experience of pathologists. There is a great need for computational methods to quantify and standardize histological observations. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of tumor cells and their microenvironment are of special interest. Here, we systematically investigated tumor cell properties and their spatial neighborhood relations by a new application of statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclerosis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific morphology exhibited significantly favored and unfavored spatial neighborhood relations of cells in dependence of their morphology. This information is important to evaluate differences between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The quantification of neighborhood relations revealed new insights of relations of CD30-positive cells in different diagnosis cases. The approach is general and can easily be applied to whole slide image analysis of other tumor types.


Assuntos
Biologia Computacional/métodos , Doença de Hodgkin/patologia , Interpretação de Imagem Assistida por Computador/métodos , Microambiente Tumoral/fisiologia , Tamanho Celular , Doença de Hodgkin/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Células de Reed-Sternberg/citologia , Células de Reed-Sternberg/patologia
9.
Mol Microbiol ; 111(6): 1399-1403, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802340

RESUMO

Each year, several million tons of dimethylsulfoniopropionate (DMSP) are produced by marine phytoplankton and bacteria as an important osmolyte to regulate their cellular osmosis. Microbial breakdown of DMSP to the volatile gas dimethylsulfide (DMS) plays an important role in global biogeochemical cycles of the sulphur element between land and the sea. Understanding the enzymes involved in the transformation of DMSP and DMS holds the key to a better understanding of oceanic DMSP cycles. Recent work by Shao et al. (2019) has resolved the crystal structure of two important enzymes, DmdB and DmdC, involved in DMSP transformation through the demethylation pathway. Their work represents an important step towards a systematic understanding of the structure-function relationships of DMSP-catabolizing enzymes in marine microbes.


Assuntos
Compostos de Sulfônio , Bactérias , Desmetilação , Propionatos , Relação Estrutura-Atividade
10.
Curr Issues Mol Biol ; 33: 173-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166191

RESUMO

Methanethiol (MT) is an organic sulfur compound with a strong and disagreeable odour. It has biogeochemical relevance as an important compound in the global sulfur cycle, where it is produced as a reactive intermediate in a number of different pathways for synthesis and degradation of other globally significant sulfur compounds such as dimethylsulfoniopropionate, dimethylsulfide and methionine. With its low odour threshold and unpleasant smell, MT can be a significant cause of malodour originating from animal husbandry, composting, landfill operations, and wastewater treatment and is also associated with faeces, flatus and oral malodour (halitosis). A diverse range of microorganisms drives the production and degradation of MT, including its aerobic and anaerobic metabolism. MT producing and degrading organisms are known to be present in terrestrial, freshwater and marine environments but may also be important in association with plant and animal (including human) hosts. This chapter considers the role of MT as an intermediate of the global sulfur cycle and discusses current knowledge of microbial pathways of MT production and degradation.


Assuntos
Bactérias/metabolismo , Metabolismo Energético/fisiologia , Compostos de Sulfidrila/metabolismo , Anaerobiose/fisiologia , Animais , Bactérias/classificação , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Redes e Vias Metabólicas/genética , Odorantes , Compostos de Enxofre/metabolismo
11.
Bioinformatics ; 32(1): 122-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363177

RESUMO

MOTIVATION: Hodgkin lymphoma (HL) is a type of B-cell lymphoma. To diagnose the subtypes, biopsies are taken and immunostained. The slides are scanned to produce high-resolution digital whole slide images (WSI). Pathologists manually inspect the spatial distribution of cells, but little is known on the statistical properties of cell distributions in WSIs. Such properties would give valuable information for the construction of theoretical models that describe the invasion of malignant cells in the lymph node and the intercellular interactions. RESULTS: In this work, we define and discuss HL cell graphs. We identify CD30(+) cells in HL WSIs, bringing together the fields of digital imaging and network analysis. We define special graphs based on the positions of the immunostained cells. We present an automatic analysis of complete WSIs to determine significant morphological and immunohistochemical features of HL cells and their spatial distribution in the lymph node tissue under three different medical conditions: lymphadenitis (LA) and two types of HL. We analyze the vertex degree distributions of CD30 cell graphs and compare them to a null model. CD30 cell graphs show higher vertex degrees than expected by a random unit disk graph, suggesting clustering of the cells. We found that a gamma distribution is suitable to model the vertex degree distributions of CD30 cell graphs, meaning that they are not scale-free. Moreover, we compare the graphs for LA and two subtypes of HL. LA and classical HL showed different vertex degree distributions. The vertex degree distributions of the two HL subtypes NScHL and mixed cellularity HL (MXcHL) were similar. AVAILABILITY AND IMPLEMENTATION: The CellProfiler pipeline used for cell detection is available at https://sourceforge.net/projects/cellgraphs/. CONTACT: ina.koch@bioinformatik.uni-frankfurt.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Processamento de Imagem Assistida por Computador/métodos , Antígeno Ki-1/metabolismo , Agregação Celular , Contagem de Células , Humanos , Reprodutibilidade dos Testes
12.
Proc Natl Acad Sci U S A ; 111(11): 4268-73, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591617

RESUMO

Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.


Assuntos
Carnitina/metabolismo , Microbiota/genética , Oxirredutases/metabolismo , Oxigenases/metabolismo , Acinetobacter baumannii/metabolismo , Cromatografia por Troca Iônica , Biologia Computacional , Escherichia coli , Humanos , Metilaminas/metabolismo , Mutagênese Sítio-Dirigida , Espectrofotometria Ultravioleta
13.
Environ Microbiol ; 18(8): 2754-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27114231

RESUMO

The volatile organosulfur compound, dimethylsulfide (DMS), plays an important role in climate regulation and global sulfur biogeochemical cycles. Microbial oxidation of DMS to dimethylsulfoxide (DMSO) represents a major sink of DMS in surface seawater, yet the underlying molecular mechanisms and key microbial taxa involved are not known. Here, we reveal that Ruegeria pomeroyi, a model marine heterotrophic bacterium, can oxidize DMS to DMSO using trimethylamine monooxygenase (Tmm). Purified Tmm oxidizes DMS to DMSO at a 1:1 ratio. Mutagenesis of the tmm gene in R. pomeroyi completely abolished DMS oxidation and subsequent DMSO formation. Expression of Tmm and DMS oxidation in R. pomeroyi is methylamine-dependent and regulated at the post-transcriptional level. Considering that Tmm is present in approximately 20% of bacterial cells inhabiting marine surface waters, particularly the marine Roseobacter clade and the SAR11 clade, our observations contribute to a mechanistic understanding of biological DMSO production in surface seawater.


Assuntos
Dimetil Sulfóxido/química , Oxigenases/metabolismo , Roseobacter/metabolismo , Sulfetos/química , Transformação Bacteriana/fisiologia , Processos Heterotróficos/fisiologia , Metilaminas/metabolismo , Oxirredução , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/microbiologia , Enxofre/metabolismo
14.
Arch Microbiol ; 198(1): 17-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475353

RESUMO

One-carbon compounds such as methanol, dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are significant intermediates in biogeochemical cycles. They are suggested to affect atmospheric chemistry and global climate. Methylotrophic microorganisms are considered as a significant sink for these compounds; therefore, we analyzed the diversity of terrestrial bacteria that utilize methanol, DMS and DMSO as carbon and energy source using culture-dependent and culture-independent methods. The effect of habitat type on the methylotrophic community structure was also investigated in rhizosphere and bulk soil. While thirteen strains affiliated to the genera Hyphomicrobium, Methylobacterium, Pseudomonas, Hydrogenophaga, Rhodococcus, Flavobacterium and Variovorax were isolated, denaturing gradient gel electrophoresis revealed the dominance of Thiobacillus, Rhodococcus, Flavobacterium and Bacteroidetes species. Furthermore, methylotrophic communities that degrade methanol or DMS are not shaped by terrestrial habitat type. Rhizosphere and soil samples showed dominance of Methylophilus spp. and Methylovorus spp. for methanol enrichments; Cytophaga spp., Pseudomonas tremae and Thiobacillus thioparus for DMS enrichments.


Assuntos
Bactérias/classificação , Técnicas Bacteriológicas , Biodiversidade , Ecossistema , Microbiologia do Solo , Bactérias/metabolismo , Bacteroidetes/fisiologia , Hyphomicrobium/fisiologia , Metanol/metabolismo , Methylobacterium/fisiologia
15.
Appl Environ Microbiol ; 81(19): 6890-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209677

RESUMO

Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.


Assuntos
Nitrofenóis/metabolismo , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rios/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Dados de Sequência Molecular , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S/genética
16.
Ecotoxicol Environ Saf ; 111: 9-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450910

RESUMO

Society's reliance upon chemicals over the last few decades has led to their increased production, application and release into the environment. Determination of chemical persistence is crucial for risk assessment and management of chemicals. Current established OECD biodegradation guidelines enable testing of chemicals under laboratory conditions but with an incomplete consideration of factors that can impact on chemical persistence in the environment. The suite of OECD biodegradation tests do not characterise microbial inoculum and often provide little insight into pathways of degradation. The present review considers limitations with the current OECD biodegradation tests and highlights novel scientific approaches to chemical fate studies. We demonstrate how the incorporation of molecular microbial ecology methods (i.e., 'omics') may improve the underlying mechanistic understanding of biodegradation processes, and enable better extrapolation of data from laboratory based test systems to the relevant environment, which would potentially improve chemical risk assessment and decision making. We outline future challenges for relevant stakeholders to modernise OECD biodegradation tests and put the 'bio' back into biodegradation.


Assuntos
Biodegradação Ambiental , Bactérias/metabolismo , Genômica , Metabolômica , Organização para a Cooperação e Desenvolvimento Econômico , Proteômica , Medição de Risco , Eliminação de Resíduos Líquidos
17.
Environ Microbiol ; 16(10): 3318-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088783

RESUMO

Methylocella silvestris, an alphaproteobacterium isolated from a forest soil, can grow on trimethylamine N-oxide (TMAO) as a sole nitrogen source; however, the molecular and biochemical mechanisms underpinning its growth remain unknown. Marker-exchange mutagenesis enabled the identification of several genes involved in TMAO metabolism, including Msil_3606, a permease of the amino acids-polyamine (APC) superfamily, and Msil_3603, consisting of an N-terminal domain of unknown function (DUF1989) and a C-terminal tetrahydrofolate-binding domain. Null mutants of Msil_3603 and Msil_3606 can no longer grow on TMAO. Purified Msil_3603 from recombinant Escherichia coli can convert TMAO to dimethylamine and formaldehyde (1 TMAO → 1 dimethylamine + 1 formaldehyde), confirming that it encodes a bona fide TMAO demethylase (Tdm). Tdm of M. silvestris and eukaryotic Tdms have no sequence homology and contrasting characteristics. Recombinant Tdm of M. silvestris appears to be hexameric, has a high affinity for TMAO (Km = 3.3 mM; Vmax = 21.7 nmol min(-1) mg(-1) ) and only catalyses demethylation of TMAO and a structural homologue, dimethyldodecylamine N-oxide. Our study has contributed to the understanding of the genetic and biochemical mechanisms for TMAO degradation in M. silvestris.


Assuntos
Aldeído Liases/fisiologia , Alphaproteobacteria/genética , Proteínas de Membrana Transportadoras/fisiologia , Metilaminas/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Alphaproteobacteria/enzimologia , Alphaproteobacteria/crescimento & desenvolvimento , Escherichia coli/genética , Genes Bacterianos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese
18.
Internet Interv ; 35: 100728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38405384

RESUMO

Background: Cardiac rehabilitation (CR) reduces recurrent cardiac events and mortality in patients with cardiovascular diseases (CVD). Innovative eHealth methods can facilitate CR uptake and effectiveness by addressing barriers associated with clinic-based rehabilitation. Tailoring eHealth-based CR to patient preferences is needed to further enhance CR. Purpose: To identify preferred behavior change techniques (BCTs) as well as barriers and facilitators for the different health behaviors targeted in eHealth-based CR among patients who have been referred to CR. Methods: Thirty-nine patients were interviewed in nine focus groups in The Netherlands, Germany, and Spain. A thematic analysis, using a combined deductive and inductive approach to coding, was conducted to identify BCTs and barriers and facilitators to behavior change. Behaviors under investigation included physical activity, medication adherence, eating a cardiac healthy-diet, stress reduction and smoking cessation. Results: The perceived helpfulness of BCTs depended on the specific behavior targeted. Common barriers were negative emotional state and physical limitations. A desire to feel physically or mentally well and having experienced a cardiac life event were the most common facilitators across health behaviors. Specific BCTs, barriers and facilitators were found for each of the health behavior. Conclusions: Behavior change techniques that patients preferred for each health behavior targeted in eHealth-based CR were identified. A negative emotional state, experiencing a life event, and improving physical functioning are important barriers and facilitators in multiple behaviors targeted in eHealth-based CR programs. Additional tailoring of interventions to patient preferences for BCTs and patient-specific barriers and facilitators per health behavior could lead to further improvement of eHealth-based CR.

19.
Environ Sci Technol ; 47(15): 8229-37, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23819841

RESUMO

Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism.


Assuntos
Produtos Agrícolas , Luz , Cinética
20.
PLoS One ; 18(12): e0294778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134012

RESUMO

INTRODUCTION: Inactivity and long periods of sitting are common in our society, even though they pose a health risk. Dynamic sitting is recommended to reduce this risk. The purpose of this study was to investigate the effect of continuous passive motion (CPM) conducted by a novel motorized office chair on lumbar lordosis and trunk muscle activation, oxygen uptake and attentional control. STUDY DESIGN: Randomized, single-session, crossover with two periods/conditions. METHODS: Twenty office workers (50% women) sat for one hour on the motorized chair, one half with CPM, the other not. The starting condition (CPM/no CPM) was switched in half of the sample. The participants were equipped with a spirometric cart, surface EMG, the Epionics SPINE system and performed a computer-based test for attentional control (AX-CPT). Outcomes were lumbar sagittal movements and posture, number of trunk muscle activations, attentional control and energy expenditure. RESULTS: The CPM of the chair causes frequent low-amplitude changes in lumbar lordosis angle (moved: 498 ± 133 vs. static: 45 ± 38) and a higher number of muscle activations. A periodic movement pattern of the lumbar spine according to the movement of the chair was observed in every participant, although, sitting behavior varied highly between individuals. Attentional control was not altered in the moved condition (p = .495; d = .16). Further, oxygen uptake did not increase higher than 1.5 MET. CONCLUSION: The effects of the motorized chair can be particularly useful for people with static sitting behavior. Further studies should investigate, whether CPM provides the assumed beneficial effects of dynamic sitting on the spine.


Assuntos
Lordose , Humanos , Feminino , Masculino , Estudos Cross-Over , Músculo Esquelético/fisiologia , Vértebras Lombares/fisiologia , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA