Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139252

RESUMO

The infection of human cytomegalovirus (HCMV) is strongly determined by the host-cell interaction in a way that the efficiency of HCMV lytic replication is dependent on the regulatory interplay between viral and cellular proteins. In particular, the activities of protein kinases, such as cyclin-dependent kinases (CDKs) and the viral CDK ortholog (vCDK/pUL97), play an important role in both viral reproduction and virus-host interaction. Very recently, we reported on the complexes formed between vCDK/pUL97, human cyclin H, and CDK7. Major hallmarks of this interplay are the interaction between cyclin H and vCDK/pUL97, which is consistently detectable across various conditions and host cell types of infection, the decrease or increase in pUL97 kinase activity resulting from cyclin H knock-down or elevated levels, respectively, and significant trans-stimulation of human CDK7 activity by pUL97 in vitro. Due to the fact that even a ternary complex of vCDK/pUL97-cyclin H-CDK7 can be detected by coimmunoprecipitation and visualized by bioinformatic structural modeling, we postulated a putative impact of the respective kinase activities on the patterns of transcription in HCMV-infected cells. Here, we undertook a first vCDK/pUL97-specific transcriptomic analysis, which combined conditions of fully lytic HCMV replication with those under specific vCDK/pUL97 or CDK7 drug-mediated inhibition or transient cyclin H knockout. The novel results were further strengthened using bioinformatic modeling of the involved multi-protein complexes. Our data underline the importance of these kinase activities for the C-terminal domain (CTD) phosphorylation-driven activation of host RNA polymerase in HCMV-infected cells. The impact of the individual experimental conditions on differentially expressed gene profiles is described in detail and discussed.


Assuntos
Ciclinas , Infecções por Herpesviridae , Humanos , Ciclinas/metabolismo , Citomegalovirus/genética , Ciclina H/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Fosforilação
2.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038782

RESUMO

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Assuntos
Pradaria , Herbivoria , Biodiversidade , Ecossistema , Nutrientes
3.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269635

RESUMO

Human cytomegalovirus (HCMV) is a pathogenic human herpesvirus associated with serious, potentially life-threatening symptoms in the immunocompromised or immunonaïve host. The limitations encountered by antiviral therapy options currently available include a narrow panel of accessible targets, the induction of viral drug resistance as well as severe drug dosage-mediated side-effects. Improved drug-targeting strategies to resolve these issues are the focus of our investigations. In particular, pharmaceutical kinase inhibitors (PKIs), either directed to host kinases or directed to the viral protein kinase pUL97, have been considered to overcome these restrictions. Recently, we reported the identification of a synergistic combination of two PKIs directed to host cyclin-dependent kinase 7 (CDK7) and viral CDK ortholog pUL97. Here, we substantiate these findings with the following results: (i) true drug synergy was exhibited by various chemical classes of PKI pairs directed to pUL97 and CDK7; (ii) no putative amplification of cytotoxicity by these drug combinations was observed; (iii) a reduction in drug dosage levels for synergistic combinations was defined on a quantitative basis and compared to monotreatments; (iv) the quantities of target proteins CDK7 and pUL97 expressed in HCMV-infected cells were assessed by confocal imaging, indicating a strong down-modulation of CDK7 levels as a result of synergistic drug treatment; (v) the functional importance of these target kinases, both binding to cyclin H, was illustrated by assessing HCMV replication under the viral genomic deletion of ORF-UL97 or cellular cyclin knock-out; (vi) new combinations of HCMV-specific drug synergy were demonstrated for solely host-directed treatments using PKIs against CDK2, CDK7, CDK8 and/or CDK9 and (vii) a triple PKI combination provided further support for the synergy approach. With these combined findings, this study highlights the potential of therapeutic drug combinations of approved, developmental and preclinical PKIs for expanding future options for anti-HCMV therapy.


Assuntos
Quinases Ciclina-Dependentes , Citomegalovirus , Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/genética , Combinação de Medicamentos , Farmacorresistência Viral , Humanos , Proteínas Virais/metabolismo , Replicação Viral
4.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233116

RESUMO

The complex host interaction network of human cytomegalovirus (HCMV) involves the regulatory protein kinase pUL97, which represents a viral cyclin-dependent kinase (CDK) ortholog. pUL97 interacts with the three human cyclin types T1, H, and B1, whereby the binding region of cyclin T1 and the pUL97 oligomerization region were both assigned to amino acids 231-280. We further addressed the question of whether HCMVs harboring mutations in ORF-UL97, i.e., short deletions or resistance-conferring point mutations, are affected in the interaction with human cyclins and viral replication. To this end, clinically relevant UL97 drug-resistance-conferring mutants were analyzed by whole-genome sequencing and used for genetic marker transfer experiments. The recombinant HCMVs indicated conservation of pUL97-cyclin interaction, since all viral UL97 point mutants continued to interact with the analyzed cyclin types and exerted wild-type-like replication fitness. In comparison, recombinant HCMVs UL97 Δ231-280 and also the smaller deletion Δ236-275, but not Δ241-270, lost interaction with cyclins T1 and H, showed impaired replication efficiency, and also exhibited reduced kinase activity. Moreover, a cellular knock-out of cyclins B1 or T1 did not alter HCMV replication phenotypes or pUL97 kinase activity, possibly indicating alternative, compensatory pUL97-cyclin interactions. In contrast, however, cyclin H knock-out, similar to virus deletion mutants in the pUL97-cyclin H binding region, exhibited strong defective phenotypes of HCMV replication, as supported by reduced pUL97 kinase activity in a cyclin H-dependent coexpression setting. Thus, cyclin H proved to be a very relevant determinant of pUL97 kinase activity and viral replication efficiency. As a conclusion, the results provide evidence for the functional importance of pUL97-cyclin interaction. High selective pressure on the formation of pUL97-cyclin complexes was identified by the use of clinically relevant mutants.


Assuntos
Ciclina H , Citomegalovirus , Proteínas Virais , Aminoácidos/metabolismo , Ciclina H/genética , Ciclina H/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/fisiologia , Marcadores Genéticos , Humanos , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Virais/genética , Replicação Viral/genética
5.
Ecol Lett ; 24(12): 2713-2725, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617374

RESUMO

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.


Assuntos
Pradaria , Solo , Biomassa , Carbono , Ecossistema , Micronutrientes , Nitrogênio/análise
6.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34240557

RESUMO

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Herbivoria , Nutrientes
7.
Glob Chang Biol ; 27(11): 2441-2457, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33675118

RESUMO

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.


Assuntos
Secas , Pradaria , Biodiversidade , Biomassa , Ecossistema , Europa (Continente)
8.
Ecol Appl ; 31(3): e02271, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33615604

RESUMO

It is generally assumed that restoring biodiversity will enhance diversity and ecosystem functioning. However, to date, it has rarely been evaluated whether and how restoration efforts manage to rebuild biodiversity and multiple ecosystem functions (ecosystem multifunctionality) simultaneously. Here, we quantified how three restoration methods of increasing intervention intensity (harvest only < topsoil removal < topsoil removal + propagule addition) affected grassland ecosystem multifunctionality 22 yr after the restoration event. We compared restored with intensively managed and targeted seminatural grasslands based on 13 biotic and abiotic, above- and belowground properties. We found that all three restoration methods improved ecosystem multifunctionality compared to intensively managed grasslands and developed toward the targeted seminatural grasslands. However, whereas higher levels of intervention intensity reached ecosystem multifunctionality of targeted seminatural grasslands after 22 yr, lower intervention missed this target. Moreover, we found that topsoil removal with and without seed addition accelerated the recovery of biotic and aboveground properties, and we found no negative long-term effects on abiotic or belowground properties despite removing the top layer of the soil. We also evaluated which ecosystem properties were the best indicators for restoration success in terms of accuracy and cost efficiency. Overall, we demonstrated that low-cost measures explained relatively more variation of ecosystem multifunctionality compared to high-cost measures. Plant species richness was the most accurate individual property in describing ecosystem multifunctionality, as it accounted for 54% of ecosystem multifunctionality at only 4% of the costs of our comprehensive multifunctionality approach. Plant species richness is the property that typically is used in restoration monitoring by conservation agencies. Vegetation structure, soil carbon storage and water-holding capacity together explained 70% of ecosystem multifunctionality at only twice the costs (8%) of plant species richness, which is, in our opinion, worth considering in future restoration monitoring projects. Hence, our findings provide a guideline for land managers how they could obtain an accurate estimate of aboveground-belowground ecosystem multifunctionality and restoration success in a highly cost-efficient way.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Plantas , Solo
9.
Proc Natl Acad Sci U S A ; 115(8): 1848-1853, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29378939

RESUMO

Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species' abundance increased more for species from lower elevations. Traits affecting the species' dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as "winners" of recent changes, yet "losers" are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.


Assuntos
Altitude , Ecossistema , Plantas/classificação , Adaptação Fisiológica , Demografia , Fenômenos Fisiológicos Vegetais , Temperatura
10.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012421

RESUMO

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

11.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32786128

RESUMO

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Assuntos
Nitrogênio , Solo , Animais , Ecossistema , Fertilização , Pradaria , Herbivoria , Humanos , Nitrogênio/análise
12.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520438

RESUMO

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Assuntos
Ecossistema , Pradaria , Carbono , Nitrogênio/análise , Nutrientes , Solo
13.
Ecol Appl ; 30(6): e02133, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32299121

RESUMO

Seminatural grasslands are important biodiversity hotspots, but they are increasingly degraded by intensive agriculture. Grassland restoration is considered to be promising in halting the ongoing loss of biodiversity, but this evaluation is mostly based on plant communities. Insect herbivores contribute substantially to grassland biodiversity and to the provisioning of a variety of ecosystem functions. However, it is unclear how they respond to different measures that are commonly used to restore seminatural grasslands from intensively used agricultural land. We studied the long-term success of different restoration techniques, which were originally targeted at reestablishing seminatural grassland plant communities, for herbivorous insect communities on taxonomic as well as functional level. Therefore, we sampled insect communities 22 yr after the establishment of restoration measures. These measures ranged from harvest and removal of biomass to removal of the topsoil layer and subsequent seeding of plant propagules. We found that insect communities in restored grasslands had higher taxonomic and functional diversity compared to intensively managed agricultural grasslands and were more similar in composition to target grasslands. Restoration measures including topsoil removal proved to be more effective, in particular in restoring species characterized by functional traits susceptible to intensive agriculture (e.g., large-bodied species). Our study shows that long-term success in the restoration of herbivorous insect communities of seminatural grasslands can be achieved by different restoration measures and that more invasive approaches that involve the removal of the topsoil layer are more effective. We attribute these restoration successes to accompanying changes in the plant community, resulting in bottom-up control of the herbivore community. Our results are of critical importance for management decisions aiming to restore multi-trophic communities, their functional composition and consequently the proliferation of ecosystem functions.


Assuntos
Pradaria , Herbivoria , Animais , Biodiversidade , Ecossistema , Insetos
14.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759737

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.


Assuntos
Antivirais/farmacologia , Artemisininas/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Antivirais/química , Artemisininas/química , Artesunato/análogos & derivados , Artesunato/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Farmacorresistência Viral/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Mitocôndrias/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
15.
Proc Biol Sci ; 286(1907): 20190429, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337314

RESUMO

Plant traits are commonly used to predict ecosystem-level processes, but the validity of such predictions is dependent on the assumption that trait variability between species is greater than trait variability within a species-the robustness assumption. Here, we compare leaf trait intraspecific and interspecific variability depending on geographical differences between sites and 5 years of experimental herbivore exclusion in two vegetation types of subalpine grasslands in Switzerland. Four leaf traits were measured from eight herbaceous species common to all 18 sites. Intraspecific trait variability differed significantly depending on site and herbivory. However, the amount and structure of variability depended on the trait measured and whether considering leaf traits separately or multiple leaf traits simultaneously. Leaf phosphorus concentration showed the highest intraspecific variability, while specific leaf area showed the highest interspecific variability and displayed intraspecific variability only in response to herbivore exclusion. Species identity based on multiple traits was not predictable. We find intraspecific variability is an essential consideration when using plant functional traits as a common currency not just species mean traits. This is particularly true for leaf nutrient concentrations, which showed high intraspecific variability in response to site differences and herbivore exclusion, a finding which suggests that the robustness assumption does not always hold.


Assuntos
Meio Ambiente , Pradaria , Herbivoria , Características de História de Vida , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Altitude , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Especificidade da Espécie , Suíça
16.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842427

RESUMO

In this paper, we present a detailed analysis and implementation of secondary radar beacons designed for a local ad-hoc localization and landing system (LAOLa) to support the navigation of autonomous ground and aerial vehicles. We discuss a switched linear feedback network as a virtually coherent oscillator and show how to use it as a secondary radar transponder. Further, we present a signal model for the beat signal of the transponder response in an FMCW radar system, which is more detailed than in previously published papers. An actual transponder realization in the 24 GHz ISM band is presented. Its RF performance was evaluated both in the laboratory and in the field. Finally, we put forward some ideas on how to overcome the range measurement inaccuracy inherent in this transponder concept.

17.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952114

RESUMO

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Assuntos
Herbivoria , Plantas , Biodiversidade
18.
J Am Chem Soc ; 140(19): 6164-6168, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29688718

RESUMO

We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO2 silica bilayer film which is chemically decoupled from the substrate.

19.
Ecology ; 99(4): 822-831, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603733

RESUMO

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Assuntos
Pradaria , Herbivoria , Animais , Biomassa , Ecossistema , Eutrofização , Humanos , Nitrogênio , Nutrientes
20.
Proc Natl Acad Sci U S A ; 112(35): 10967-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283343

RESUMO

Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.


Assuntos
Ecossistema , Poaceae/fisiologia , Microbiologia do Solo , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA