Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575848

RESUMO

ApoE abnormality represents a well-known risk factor for cardiovascular diseases. Beyond its role in lipid metabolism, novel studies demonstrate a complex involvement of apoE in membrane homeostasis and signaling as well as in nuclear transcription. Due to the large spread of apoE isoforms in the human population, there is a need to understand the apoE's role in pathological processes. Our study aims to dissect the involvement of apoE in heart failure. We showed that apoE-deficient rats present multiple organ damages (kidney, liver, lung and spleen) besides the known predisposition for obesity and affected lipid metabolism (two-fold increase in tissular damages in liver and one-fold increase in kidney, lung and spleen). Heart tissue also showed significant morphological changes in apoE-/- rats, mostly after a high-fat diet. Interestingly, the right ventricle of apoE-/- rats fed a high-fat diet showed more damage and affected collagen content (~60% less total collagen content and double increase in collagen1/collagen3 ratio) compared with the left ventricle (no significant differences in total collagen content or collagen1/collagen3 ratio). In patients, we were able to find a correlation between the presence of ε4 allele and cardiomyopathy (χ2 = 10.244; p = 0.001), but also with right ventricle dysfunction with decreased TAPSE (15.3 ± 2.63 mm in ε4-allele-presenting patients vs. 19.8 ± 3.58 mm if the ε4 allele is absent, p < 0.0001*) and increased in systolic pulmonary artery pressure (50.44 ± 16.47 mmHg in ε4-allele-presenting patients vs. 40.68 ± 15.94 mmHg if the ε4 allele is absent, p = 0.0019). Our results confirm that the presence of the ε4 allele is a lipid-metabolism-independent risk factor for heart failure. Moreover, we show for the first time that the presence of the ε4 allele is associated with right ventricle dysfunction, implying different regulatory mechanisms of fibroblasts and the extracellular matrix in both ventricles. This is essential to be considered and thoroughly investigated before the design of therapeutical strategies for patients with heart failure.


Assuntos
Apolipoproteína E4/genética , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/fisiopatologia , Suscetibilidade a Doenças , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Alelos , Animais , Apolipoproteína E4/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Dieta Hiperlipídica , Ecocardiografia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Testes de Função Cardíaca , Humanos , Imuno-Histoquímica , Masculino , Mutação , Ratos , Disfunção Ventricular Direita/diagnóstico
2.
Comput Biol Med ; 167: 107686, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37972534

RESUMO

Persistence of the pathology of in-stent restenosis even with the advent of drug-eluting stents warrants the development of highly resolved in silico models. These computational models assist in gaining insights into the transient biochemical and cellular mechanisms involved and thereby optimize the stent implantation parameters. Within this work, an already established fully-coupled Lagrangian finite element framework for modeling the restenotic growth is enhanced with the incorporation of endothelium-mediated effects and pharmacological influences of rapamycin-based drugs embedded in the polymeric layers of the current generation drug-eluting stents. The continuum mechanical description of growth is further justified in the context of thermodynamic consistency. Qualitative inferences are drawn from the model developed herein regarding the efficacy of the level of drug embedment within the struts as well as the release profiles adopted. The framework is then intended to serve as a tool for clinicians to tune the interventional procedures patient-specifically.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Humanos , Sirolimo/farmacologia , Simulação por Computador , Stents
3.
Int J Cardiol ; 388: 131151, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423572

RESUMO

BACKGROUND: Despite optimizations of coronary stenting technology, a residual risk of in-stent restenosis (ISR) remains. Vessel wall injury has important impact on the development of ISR. While injury can be assessed in histology, there is no injury score available to be used in clinical practice. METHODS: Seven rats underwent abdominal aorta stent implantation. At 4 weeks after implantation, animals were euthanized, and strut indentation, defined as the impression of the strut into the vessel wall, as well as neointimal growth were assessed. Established histological injury scores were assessed to confirm associations between indentation and vessel wall injury. In addition, stent strut indentation was assessed by optical coherence tomography (OCT) in an exemplary clinical case. RESULTS: Stent strut indentation was associated with vessel wall injury in histology. Furthermore, indentation was positively correlated with neointimal thickness, both in the per-strut analysis (r = 0.5579) and in the per-section analysis (r = 0.8620; both p ≤ 0.001). In a clinical case, indentation quantification in OCT was feasible, enabling assessment of injury in vivo. CONCLUSION: Assessing stent strut indentation enables periprocedural assessment of stent-induced damage in vivo and therefore allows for optimization of stent implantation. The assessment of stent strut indentation might become a valuable tool in clinical practice.


Assuntos
Doença da Artéria Coronariana , Reestenose Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Lesões do Sistema Vascular , Animais , Ratos , Doença da Artéria Coronariana/patologia , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/etiologia , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Tomografia de Coerência Óptica/métodos , Vasos Coronários/patologia , Resultado do Tratamento , Neointima/diagnóstico por imagem , Neointima/patologia
4.
PLoS One ; 17(5): e0267433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35587929

RESUMO

BACKGROUND: By low-density lipoprotein (LDL) reduction, statins play an important role in cardiovascular risk modification. Incompletely understood pleiotropic statin effects include vasoprotection that might originate from mobilisation and differentiation of vascular progenitor cells. Data on the potentially differential impact of statin treatment intensity on circulating progenitor cells in patients undergoing percutaneous coronary intervention (PCI) are scarce. This study examines the potential association of different permanent statin treatment regimens on circulating progenitor cells in patients with coronary syndrome. METHODS AND RESULTS: In a monocentric prospective all-comers study, 105 consecutive cases scheduled for coronary angiography due to either (A) non-invasive proof of ischemia and chronic coronary syndrome (CCS) or (B) troponin-positive acute coronary syndrome (ACS) were included. According to the 2018 American College of Cardiology Guidelines on Blood Cholesterol, patients were clustered depending on their respective permanent statin treatment regimen in either a high- to moderate-intensity statin treatment (HIST) or a low-intensity statin treatment (LIST) group. Baseline characteristics including LDL levels were comparable. From blood drawn at the time of PCI, peripheral blood mononuclear cells were isolated, cultivated and counted and, by density gradient centrifugation, levels of circulating progenitor cells were determined using fluorescence-activated cell sorting (FACS) analysis. In ACS patients both absolute and relative numbers of circulating early-outgrowth endothelial progenitor cells (EPCs) concurrently were significantly lower in the HIST group as compared to the LIST group. This effect was more pronounced in ACS patients than in CCS patients. Both in ACS and CCS patients, HIST caused a significant reduction of the number of circulating SMPCs. CONCLUSIONS: In patients undergoing PCI, a dose intensity-dependent and LDL level-independent pro-differentiating vasoprotective pleiotropic capacity of statins for EPC and SMPC is demonstrated.


Assuntos
Síndrome Coronariana Aguda , Inibidores de Hidroximetilglutaril-CoA Redutases , Intervenção Coronária Percutânea , Síndrome Coronariana Aguda/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Leucócitos Mononucleares , Intervenção Coronária Percutânea/efeitos adversos , Estudos Prospectivos , Células-Tronco
5.
J Vis Exp ; (165)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33283790

RESUMO

Percutaneous coronary intervention (PCI), combined with the deployment of a coronary stent, represents the gold standard in interventional treatment of coronary artery disease. In-stent restenosis (ISR) is determined by an excessive proliferation of neointimal tissue within the stent and limits the long-term success of stents. A variety of animal models have been used to elucidate pathophysiological processes underlying in-stent restenosis (ISR), with the porcine coronary and the rabbit iliac artery models being the most frequently used. Murine models provide the advantages of high throughput, ease of handling and housing, reproducibility, and a broad availability of molecular markers. The apolipoprotein E deficient (apoE-/- ) mouse model has been widely used to study cardiovascular diseases. However, stents must be miniaturized to be implanted into mice, involving important changes of their mechanical and (potentially) biological properties. The use of apoE-/- rats can overcome these shortcomings as apoE-/- rats allow for the evaluation of human-sized coronary stents while at the same time providing an atherogenic phenotype. This makes them an excellent and reliable model to investigate ISR after stent implantation. Here, we describe, in detail, the implantation of commercially available human coronary stents into the abdominal aorta of rats with an apoE-/- background using a trans-femoral access.


Assuntos
Aorta Abdominal/cirurgia , Implante de Prótese Vascular , Vasos Coronários/cirurgia , Artéria Femoral/cirurgia , Stents , Animais , Aorta Abdominal/patologia , Feminino , Humanos , Masculino , Ratos , Reprodutibilidade dos Testes , Resultado do Tratamento
6.
J Tissue Eng Regen Med ; 14(10): 1415-1427, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668066

RESUMO

We propose in vitro endothelialization of drug-eluting stents (DES) to overcome late stent thrombosis by directly introducing late-outgrowth human endothelial progenitor cells (EPCs) at the target site utilizing abluminal DES. Isolated EPCs were confirmed as late-outgrowth EPCs by flow cytometric analysis. Abluminally paclitaxel-loaded stents were seeded with different cell concentrations and durations to determine optimal seeding conditions, in both uncrimped and crimped configurations. The seeding yield was determined by evaluating the percent coverage of the stent struts' area. The EPC-seeded DES were exposed to arterial shear stress to evaluate the effect of high shear stress on EPCs. To investigate how much paclitaxel elutes during the seeding procedure, a pharmacokinetic analysis was performed. Finally, to validate the proof of concept, EPC-seeded DES were placed on a fibrin matrix with and without smooth muscle cells (SMCs) and cultured for 3 days under perfusion. The seeding procedure resulted in 47% and 26% coverage of the stent surface in uncrimped and crimped conditions, respectively. After the optimal seeding, almost 99% of drug was still available. When EPC-seeded DES were placed on a fibrin matrix and cultured for 3 days, the EPCs confluently covered the stent surface and spread to the surrounding fibrin gel. When EPC-seeded DES were placed on SMC-containing fibrin layers, cells in contact with the struts died. EPCs can be successfully seeded onto DES without losing drug-eluting capability, and EPCs exhibit sufficient proliferative ability. EPC-seeded DES may combine early re-endothelialization ability with the antirestenotic effectiveness of DES.


Assuntos
Stents Farmacológicos , Células Progenitoras Endoteliais/metabolismo , Adulto , Contagem de Células , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Reprodutibilidade dos Testes
7.
Discoveries (Craiova) ; 8(1): e106, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32309623

RESUMO

In patients with cardiovascular events, such as myocardial infarction or aortic dissection without known risk factors for cardiovascular disease, neoplastic disease should be considered as a differential diagnosis. In this report, we present a case of a 51-year old man with previously undiagnosed non-small lung cancer leading to fatal cardiovascular complications due to hemovascular spread, diagnosed post-mortem. This case illustrates the value of autopsy in unexpected deaths.

8.
Sci Rep ; 9(1): 18153, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796798

RESUMO

The long-term success of coronary stent implantation is limited by in-stent restenosis (ISR). In spite of a broad variety of animal models available, an ideal high-throughput model of ISR has been lacking. Apolipoprotein E (apoE) deficient rats enable the evaluation of human-sized coronary stents while at the same time providing an atherogenic phenotype. Whereas apoE deficient rats have been proposed as animal model of atherosclerosis, to date it is unknown whether they also develop pronounced ISR. We sought to assess ISR after abdominal aorta stent implantation in apoE deficient rats. A total of 42 rats (16 wildtype, 13 homozygous apoE-/- and 13 heterozygous apoE+/- rats) underwent abdominal aorta stent implantation. After 28 days blood samples were analyzed to characterize lipid profiles. ISR was assessed by histomorphometric means. Homozygous apoE-/- rats exhibited significantly higher total cholesterol and low-density cholesterol levels than wildtype apoE+/+ and heterozygous apoE+/- rats. ISR was significantly pronounced in homozygous apoE-/- rats as compared to wildtype apoE+/+ (p = <0.0001) and heterozygous apoE+/- rats (p = 0.0102) on western diet. Abdominal aorta stenting of apoE-/- rats is a reliable model to investigate ISR after stent implantation and thus can be used for the evaluation of novel stent concepts. Apolipoprotein E (apoE) deficient rats have been proposed as animal model of atherosclerosis. We investigated the development of restenosis 28 days after stent implantation into the abdominal aorta of wildtype apoE+/+, homozygous apoE-/- and heterozygous apoE+/- rats, respectively. Homozygous apoE-/- rats exhibited significantly higher LDL and significantly lower HDL cholesterol levels compared to wildtype apoE+/+ and heterozygous apoE+/- rats. Restenosis after stent implantation was significantly pronounced in western-diet-fed homozygous apoE-/- rats, accompanied by a significantly increased neointimal thickness. Thus, apoE knockout rats exhibit elevated restenosis and might provide a novel tool for testing of innovative stent concepts.


Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Reestenose Coronária/metabolismo , Nucleases de Dedos de Zinco/metabolismo , Animais , Aorta Abdominal/metabolismo , Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Modelos Animais de Doenças , Stents Farmacológicos , Masculino , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA