Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 15(10): 677-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25207437

RESUMO

Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Capeamento de Actina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Conformação Proteica
2.
Cell ; 134(5): 828-42, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775315

RESUMO

The dendritic actin network generated by the Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing, and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with the Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces the Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks.


Assuntos
4-Butirolactona/análogos & derivados , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Cortactina/metabolismo , 4-Butirolactona/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos , Humanos , Camundongos , Pseudópodes , Ratos
3.
Genes Dev ; 25(7): 730-41, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21406550

RESUMO

Dynamic assembly and disassembly of actin filaments is a major driving force for cell movements. Border cells in the Drosophila ovary provide a simple and genetically tractable model to study the mechanisms regulating cell migration. To identify new genes that regulate cell movement in vivo, we screened lethal mutations on chromosome 3R for defects in border cell migration and identified two alleles of the gene psidin (psid). In vitro, purified Psid protein bound F-actin and inhibited the interaction of tropomyosin with F-actin. In vivo, psid mutations exhibited genetic interactions with the genes encoding tropomyosin and cofilin. Border cells overexpressing Psid together with GFP-actin exhibited altered protrusion/retraction dynamics. Psid knockdown in cultured S2 cells reduced, and Psid overexpression enhanced, lamellipodial dynamics. Knockdown of the human homolog of Psid reduced the speed and directionality of migration in wounded MCF10A breast epithelial monolayers, whereas overexpression of the protein increased migration speed and altered protrusion dynamics in EGF-stimulated cells. These results indicate that Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration.


Assuntos
Proteínas Sanguíneas/metabolismo , Movimento Celular , Extensões da Superfície Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação , Ovário/citologia , Tropomiosina/metabolismo
4.
Development ; 142(14): 2478-86, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26153232

RESUMO

The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/embriologia , Citoesqueleto de Actina/metabolismo , Animais , Polaridade Celular/fisiologia , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Genes de Insetos , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mutação , Fenótipo , Estrutura Terciária de Proteína
5.
Curr Opin Cell Biol ; 14(1): 76-81, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11792548

RESUMO

A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Endocitose , Animais , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/fisiologia , Modelos Biológicos , Miosinas/fisiologia
6.
Mol Cancer Res ; 17(4): 987-1001, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610108

RESUMO

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The actin-binding protein cortactin facilitates branched actin network formation through activation of the actin-related protein (Arp) 2/3 complex. Increased cortactin expression due to gene amplification is observed in head and neck squamous cell carcinoma (HNSCC) and other cancers, corresponding with elevated tumor progression and poor patient outcome. Arp2/3 complex activation is responsible for driving increased migration and extracellular matrix (ECM) degradation by governing invadopodia formation and activity. Although cortactin-mediated activation of Arp2/3 complex and invadopodia regulation has been well established, signaling pathways responsible for governing cortactin binding to Arp2/3 are unknown and potentially present a new avenue for anti-invasive therapeutic targeting. Here we identify casein kinase (CK) 2α phosphorylation of cortactin as a negative regulator of Arp2/3 binding. CK2α directly phosphorylates cortactin at a conserved threonine (T24) adjacent to the canonical Arp2/3 binding motif. Phosphorylation of cortactin T24 by CK2α impairs the ability of cortactin to bind Arp2/3 and activate actin nucleation. Decreased invadopodia activity is observed in HNSCC cells with expression of CK2α phosphorylation-null cortactin mutants, shRNA-mediated CK2α knockdown, and with the CK2α inhibitor Silmitasertib. Silmitasertib inhibits HNSCC collective invasion in tumor spheroids and orthotopic tongue tumors in mice. Collectively these data suggest that CK2α-mediated cortactin phosphorylation at T24 is critical in regulating cortactin binding to Arp2/3 complex and pro-invasive activity, identifying a potential targetable mechanism for impairing HNSCC invasion. IMPLICATIONS: This study identifies a new signaling pathway that contributes to enhancing cancer cell invasion.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/4/987/F1.large.jpg.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Caseína Quinase II/metabolismo , Cortactina/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Neoplasias de Cabeça e Pescoço , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Fosforilação , Podossomos , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
Curr Biol ; 12(21): 1852-7, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12419186

RESUMO

The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.


Assuntos
Actinas/metabolismo , Dinamina II/metabolismo , Proteínas dos Microfilamentos/metabolismo , Cortactina , GTP Fosfo-Hidrolases/metabolismo
10.
Nature ; 430(7001): 734-5, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15306794
11.
Nat Commun ; 6: 8415, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412145

RESUMO

Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the 'capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Proteínas de Capeamento de Actina/genética , Actinas/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Escherichia coli , Células HEK293 , Humanos , Camundongos , Mutação , Interferência de RNA
12.
PLoS One ; 9(4): e94330, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710573

RESUMO

Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Dinamina II/metabolismo , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Dinamina II/química , Guanosina Trifosfato/metabolismo , Hidrólise , Estrutura Terciária de Proteína , Transporte Proteico , Ratos
13.
Int Rev Cell Mol Biol ; 302: 187-219, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23351711

RESUMO

The large GTPase dynamin is well known for its actions on budded cellular membranes to generate vesicles, most often, clathrin-coated endocytic vesicles. The scope of cellular processes in which dynamin-mediated vesicle formation occurs, has expanded to include secretory vesicle formation at the Golgi, from other endosomes and nonclathrin structures, such as caveolae, as well as membrane remodeling during exocytosis and vesicle fusion. An intriguing new facet of dynamin's sphere of influence is the cytoskeleton. Cytoskeletal filament networks maintain cell shape, provide cell movement, execute cell division and orchestrate vesicle trafficking. Recent evidence supports the hypothesis that dynamin influences actin filaments and microtubules via mechanisms that are independent of its membrane-remodeling activities. This chapter discusses this emerging evidence and considers possible mechanisms of action.


Assuntos
Citoesqueleto de Actina/metabolismo , Cavéolas/metabolismo , Divisão Celular/fisiologia , Dinaminas/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Citoesqueleto de Actina/genética , Transporte Biológico Ativo/fisiologia , Dinaminas/genética , Células Eucarióticas
14.
Cytoskeleton (Hoboken) ; 70(12): 819-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24124181

RESUMO

IQGAP1 stimulates branched actin filament nucleation by activating N-WASP, which then activates the Arp2/3 complex. N-WASP can be activated by other factors, including GTP-bound Cdc42 or Rac1, which also bind IQGAP1. Here we report the use of purified proteins for in vitro binding and actin polymerization assays, and Förster (or fluorescence) resonance energy transfer (FRET) microscopy of cultured cells to illuminate functional interactions among IQGAP1, N-WASP, actin, and either Cdc42 or Rac1. In pyrene-actin assembly assays containing N-WASP and Arp2/3 complex, IQGAP1 plus either small G protein cooperatively stimulated actin filament nucleation by reducing the lag time before 50% maximum actin polymerization was reached. Similarly, Cdc42 and Rac1 modulated the binding of IQGAP1 to N-WASP in a dose-dependent manner, with Cdc42 enhancing the interaction and Rac1 reducing the interaction. These in vitro reconstitution results suggested that IQGAP1 interacts by similar, yet distinct mechanisms with Cdc42 versus Rac1 to regulate actin filament assembly through N-WASP in vivo. The physiological relevance of these multi-protein interactions was substantiated by 3-color FRET microscopy of live MDCK cells expressing various combinations of fluorescent N-WASP, IQGAP1, Cdc42, Rac1, and actin. This study also establishes 3-color FRET microscopy as a powerful tool for studying dynamic intermolecular interactions in live cells.


Assuntos
Proteínas Ativadoras de ras GTPase/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Bovinos , Cães , Transferência Ressonante de Energia de Fluorescência , Humanos , Células Madin Darby de Rim Canino , Microscopia de Fluorescência/métodos , Ligação Proteica , Coelhos , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/química
15.
Dev Cell ; 19(2): 189-90, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20708580

RESUMO

Signaling circuits often coordinate cellular membranes and actin filaments at distinct sites to direct cell behavior. In this issue of Developmental Cell, Bershteyn et al. outline how the molecular scaffold protein, MIM, which bends membranes and binds actin filaments, is at the middle of one such circuit to regulate ciliogenesis.

16.
J Biol Chem ; 284(36): 23995-4005, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19605363

RESUMO

The large GTPase dynamin, best known for its activities that remodel membranes during endocytosis, also regulates F-actin-rich structures, including podosomes, phagocytic cups, actin comet tails, subcortical ruffles, and stress fibers. The mechanisms by which dynamin regulates actin filaments are not known, but an emerging view is that dynamin influences F-actin via its interactions with proteins that interact directly or indirectly with actin filaments. We show here that dynamin2 GTPase activity remodels actin filaments in vitro via a mechanism that depends on the binding partner and F-actin-binding protein, cortactin. Tightly associated actin filaments cross-linked by dynamin2 and cortactin became loosely associated after GTP addition when viewed by transmission electron microscopy. Actin filaments were dynamically unraveled and fragmented after GTP addition when viewed in real time using total internal reflection fluorescence microscopy. Cortactin stimulated the intrinsic GTPase activity of dynamin2 and maintained a stable link between actin filaments and dynamin2, even in the presence of GTP. Filaments remodeled by dynamin2 GTPase in vitro exhibit enhanced sensitivity to severing by the actin depolymerizing factor, cofilin, suggesting that GTPase-dependent remodeling influences the interactions of actin regulatory proteins and F-actin. The global organization of the actomyosin cytoskeleton was perturbed in U2-OS cells depleted of dynamin2, implicating dynamin2 in remodeling actin filaments that comprise supramolecular F-actin arrays in vivo. We conclude that dynamin2 GTPase remodels actin filaments and plays a role in orchestrating the global actomyosin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Dinamina II/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Bovinos , Linhagem Celular , Guanosina Trifosfato/metabolismo , Ligação Proteica/fisiologia , Coelhos , Ratos
17.
J Biol Chem ; 283(15): 9814-9, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18283104

RESUMO

Ena/VASP (vasodialator-stimulated protein) proteins regulate many actin-dependent events, including formation of protrusive structures, fibroblast migration, neurite extension, cell-cell adhesion, and Listeria pathogenesis. In vitro, Ena/VASP activities on actin are complex and varied. They promote actin assembly, protect filaments from cappers, bundle filaments, and inhibit filament branching. To determine the mechanisms by which Ena/VASP proteins regulate actin dynamics at barbed ends, we monitored individual actin filaments growing in the presence of VASP and profilin using total internal reflection fluorescence microscopy. Filament growth was unchanged by VASP, but filaments grew faster in profilin-actin and VASP than with profilin-actin alone. Actin filaments were captured directly by VASP-coated surfaces via interactions with growing barbed ends. End-attached filaments transiently paused but resumed growth after becoming bound to the surface via a filament side attachment. Thus, Ena/VASP proteins promote actin assembly by interacting directly with actin filament barbed ends, recruiting profilin-actin, and blocking capping.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Moléculas de Adesão Celular/química , Proteínas dos Microfilamentos/química , Fosfoproteínas/química , Profilinas/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Fibroblastos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Neuritos/metabolismo , Fosfoproteínas/metabolismo , Profilinas/metabolismo
18.
Cell ; 131(2): 236-8, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17956726

RESUMO

Polymerization of actin filaments powers many dynamic cellular events and is directed by a small group of actin nucleators. In this issue, Ahuja et al. (2007) identify and characterize a new actin nucleator called cordon-bleu (Cobl) that may drive morphogenesis of the central nervous system during development.


Assuntos
Actinas/metabolismo , Neurônios/fisiologia , Proteínas/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Animais , Proteínas do Citoesqueleto , Citoesqueleto/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Neurônios/citologia , Neurônios/metabolismo , Proteínas/genética
19.
Cell ; 128(5): 915-29, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17350576

RESUMO

Actin filament formation and turnover within the treadmilling actin filament array at the leading edge of migrating cells are interdependent and coupled, but the mechanisms coordinating these two activities are not understood. We report that Coronin 1B interacts simultaneously with Arp2/3 complex and Slingshot (SSH1L) phosphatase, two regulators of actin filament formation and turnover, respectively. Coronin 1B inhibits filament nucleation by Arp2/3 complex and this inhibition is attenuated by phosphorylation of Coronin 1B at Serine 2, a site targeted by SSH1L. Coronin 1B also directs SSH1L to lamellipodia where SSH1L likely regulates Cofilin activity via dephosphorylation. Accordingly, depleting Coronin 1B increases phospho-Cofilin levels, and alters lamellipodial dynamics and actin filament architecture at the leading edge. We conclude that Coronin 1B's coordination of filament formation by Arp2/3 complex and filament turnover by Cofilin is required for effective lamellipodial protrusion and cell migration.


Assuntos
4-Butirolactona/análogos & derivados , Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Drosophila , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Quimografia , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
J Cell Sci ; 120(Pt 4): 658-69, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17264147

RESUMO

IQGAP1 has been implicated as a regulator of cell motility because its overexpression or underexpression stimulates or inhibits cell migration, respectively, but the underlying mechanisms are not well understood. Here, we present evidence that IQGAP1 stimulates branched actin filament assembly, which provides the force for lamellipodial protrusion, and that this function of IQGAP1 is regulated by binding of type 2 fibroblast growth factor (FGF2) to a cognate receptor, FGFR1. Stimulation of serum-starved MDBK cells with FGF2 promoted IQGAP1-dependent lamellipodial protrusion and cell migration, and intracellular associations of IQGAP1 with FGFR1--and two other factors--the Arp2/3 complex and its activator N-WASP, that coordinately promote nucleation of branched actin filament networks. FGF2 also induced recruitment of IQGAP1, FGFR1, N-WASP and Arp2/3 complex to lamellipodia. N-WASP was also required for FGF2-stimulated migration of MDBK cells. In vitro, IQGAP1 bound directly to the cytoplasmic tail of FGFR1 and to N-WASP, and stimulated branched actin filament nucleation in the presence of N-WASP and the Arp2/3 complex. Based on these observations, we conclude that IQGAP1 links FGF2 signaling to Arp2/3 complex-dependent actin assembly by serving as a binding partner for FGFR1 and as an activator of N-WASP.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/fisiologia , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Animais , Bovinos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Rim/citologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA