Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 459(7250): 1102-4, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19553993

RESUMO

The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.


Assuntos
Gases/química , Lua , Sódio/análise , Exobiologia , Planetas , Análise Espectral
2.
Nature ; 446(7133): 294-6, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17361177

RESUMO

The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.

3.
Astrobiology ; 4(1): 81-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104905

RESUMO

The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.


Assuntos
Ar , Meteoroides , Temperatura
4.
Astrobiology ; 4(1): 67-79, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104904

RESUMO

Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.


Assuntos
Meteoroides , Compostos Orgânicos
5.
Science ; 316(5831): 1585, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17569855

RESUMO

The discovery of dwarf planet Eris was followed shortly by the discovery of its satellite, Dysnomia, but the satellite orbit, and thus the system mass, was not known. New observations with the Keck Observatory and the Hubble Space Telescopes show that Dysnomia has a circular orbit with a radius of 37,350 +/- 140 (1-sigma) kilometers and a 15.774 +/- 0.002 day orbital period around Eris. These orbital parameters agree with expectations for a satellite formed out of the orbiting debris left from a giant impact. The mass of Eris from these orbital parameters is 1.67 x 10(22) +/- 0.02 x 10(22) kilograms, or 1.27 +/- 0.02 that of Pluto.

6.
Science ; 310(5747): 477-9, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16239473

RESUMO

Observations of Titan's mid-latitude clouds from the W. M. Keck and Gemini Observatories show that they cluster near 350 degrees W longitude, 40 degrees S latitude. These clouds cannot be explained by a seasonal shift in global circulation and thus presumably reflect a mechanism on Titan such as geysering or cryovolcanism in this region. The rate of volatile release necessary to trigger cloud formation could easily supply enough methane to balance the loss to photolysis in the upper atmosphere.


Assuntos
Metano , Saturno , Atmosfera , Meio Ambiente Extraterreno , Estações do Ano , Temperatura , Erupções Vulcânicas
7.
Science ; 310(5745): 92-5, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16210535

RESUMO

Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.


Assuntos
Saturno , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Gelo , Metano , Astronave , Análise Espectral , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA