Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Res Toxicol ; 31(10): 1042-1051, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30152692

RESUMO

Acute myeloid leukemia (AML) is a rare yet deadly cancer of the blood and bone marrow. Presently, induction chemotherapy with the DNA damaging drugs cytarabine (ARA-C) and idarubicin (IDA), known as 7 + 3, is the standard of care for most AML patients. However, 7 + 3 is a relatively ineffective therapy, particularly in older patients, and has serious therapy-related toxicities. Therefore, a diagnostic test to predict which patients will respond to 7 + 3 is a critical unmet medical need. We hypothesize that a threshold level of therapy-induced 7 + 3 drug-DNA adducts determines cytotoxicity and clinical response. We further hypothesize that in vitro exposure of AML cells to nontoxic diagnostic microdoses enables prediction of the ability of AML cells to achieve that threshold during treatment. Our test involves dosing cells with very low levels of 14C-labeled drug followed by DNA isolation and quantification of drug-DNA adducts via accelerator mass spectrometry. Here, we have shown proof of principle by correlating ARA-C- and DOX-DNA adduct levels with cellular IC50 values of paired sensitive and resistant cancer cell lines and AML cell lines. Moreover, we have completed a pilot retrospective trial of diagnostic microdosing for 10 viably cryopreserved primary AML samples and observed higher ARA-C- and DOX-DNA adducts in the 7 + 3 responders than nonresponders. These initial results suggest that diagnostic microdosing may be a feasible and useful test for predicting patient response to 7 + 3 induction chemotherapy, leading to improved outcomes for AML patients and reduced treatment-related morbidity and mortality.


Assuntos
Citarabina/uso terapêutico , Idarubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Citarabina/química , Citarabina/toxicidade , DNA/química , Adutos de DNA/análise , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Humanos , Idarubicina/química , Idarubicina/toxicidade , Leucemia Mieloide Aguda/diagnóstico , Espectrometria de Massas
2.
Chem Res Toxicol ; 31(12): 1293-1304, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381944

RESUMO

Platinum drugs, including carboplatin and oxaliplatin, are commonly used chemotherapy drugs that kill cancer cells by forming toxic drug-DNA adducts. These drugs have a proven, but modest, efficacy against several aggressive subtypes of breast cancer but also cause several side effects that can lead to the cessation of treatment. There is a clinical need to identify patients who will respond to platinum drugs in order to better inform clinical decision making. Diagnostic microdosing involves dosing patients or patient samples with subtherapeutic doses of radiolabeled platinum followed by measurement of platinum-DNA adducts in blood or tumor tissue and may be used to predict patient response. We exposed a panel of six breast cancer cell lines to 14C-labeled carboplatin or oxaliplatin at therapeutic and microdose (1% therapeutic dose) concentrations for a range of exposure lengths and isolated DNA from the cells. The DNA was converted to graphite, and measurement of radiocarbon due to platinum-DNA adduction was quantified via accelerator mass spectrometry (AMS). We observed a linear correlation in adduct levels between the microdose and therapeutic dose, and the level of platinum-DNA adducts corresponded to cell line drug sensitivity for both carboplatin and oxaliplatin. These results showed a clear separation in adduct levels between the sensitive and resistant groups of cell lines that could not be fully explained or predicted by changes in DNA repair rates or mutations in DNA repair genes. Further, we were able to quantitate oxaliplatin-DNA adducts in the blood and tumor tissue of a metastatic breast cancer patient. Together, these data support the use of diagnostic microdosing for predicting patient sensitivity to platinum. Future studies will be aimed at replicating this data in a clinical feasibility trial.


Assuntos
Complexos de Coordenação/toxicidade , Adutos de DNA/análise , Dano ao DNA/efeitos dos fármacos , Platina/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carboplatina/química , Carboplatina/toxicidade , Linhagem Celular Tumoral , Complexos de Coordenação/química , Reparo do DNA/efeitos dos fármacos , Feminino , Humanos , Espectrometria de Massas , Oxaliplatina/química , Oxaliplatina/toxicidade
3.
Chem Res Toxicol ; 29(11): 1843-1848, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657672

RESUMO

Gemcitabine metabolites cause the termination of DNA replication and induction of apoptosis. We determined whether subtherapeutic "microdoses" of gemcitabine are incorporated into DNA at levels that correlate to drug cytotoxicity. A pair of nearly isogenic bladder cancer cell lines differing in resistance to several chemotherapy drugs were treated with various concentrations of 14C-labeled gemcitabine for 4-24 h. Drug incorporation into DNA was determined by accelerator mass spectrometry. A mechanistic analysis determined that RRM2, a DNA synthesis protein and a known resistance factor, substantially mediated gemcitabine toxicity. These results support gemcitabine levels in DNA as a potential biomarker of drug cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Antineoplásicos/farmacocinética , Área Sob a Curva , Linhagem Celular Tumoral , Reparo do DNA , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Gencitabina
4.
J Cell Sci ; 125(Pt 11): 2604-14, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22427689

RESUMO

TIG3 is an important pro-differentiation regulator that is expressed in the suprabasal epidermis. We have shown that TIG3 activates selective keratinocyte differentiation-associated processes leading to cornified envelope formation. However, TIG3 also suppresses cell proliferation by an unknown mechanism. Our present studies suggest that cessation of growth is mediated through the impact of TIG3 on the centrosome and microtubules. The centrosome regulates microtubule function in interphase cells and microtubule spindle formation in mitotic cells. We show that TIG3 colocalizes with γ-tubulin and pericentrin at the centrosome. Localization of TIG3 at the centrosome alters microtubule nucleation and reduces anterograde microtubule growth, increases acetylation and detyrosination of α-tubulin, increases insoluble tubulin and drives the formation of a peripheral microtubule ring adjacent to the plasma membrane. In addition, TIG3 suppresses centrosome separation, but not duplication, and reduces cell proliferation. We propose that TIG3 regulates the formation of the peripheral microtubule ring observed in keratinocytes of differentiated epidermis and also has a role in the cessation of proliferation in these cells.


Assuntos
Centrossomo/metabolismo , Microtúbulos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Divisão Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Nocodazol/farmacologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
5.
Toxics ; 7(2)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075884

RESUMO

This review summarizes recent developments in radiocarbon tracer technology and applications. Technologies covered include accelerator mass spectrometry (AMS), including conversion of samples to graphite, and rapid combustion to carbon dioxide to enable direct liquid sample analysis, coupling to HPLC for real-time AMS analysis, and combined molecular mass spectrometry and AMS for analyte identification and quantitation. Laser-based alternatives, such as cavity ring down spectrometry, are emerging to enable lower cost, higher throughput measurements of biological samples. Applications covered include radiocarbon dating, use of environmental atomic bomb pulse radiocarbon content for cell and protein age determination and turnover studies, and carbon source identification. Low dose toxicology applications reviewed include studies of naphthalene-DNA adduct formation, benzo[a]pyrene pharmacokinetics in humans, and triclocarban exposure and risk assessment. Cancer-related studies covered include the use of radiocarbon-labeled cells for better defining mechanisms of metastasis and the use of drug-DNA adducts as predictive biomarkers of response to chemotherapy.

6.
PLoS One ; 12(6): e0177761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586369

RESUMO

ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) receptor tyrosine kinases are critical for tissue development and maintenance, and frequently become oncogenic when mutated or overexpressed. In vitro analysis of ErbB receptor kinases can be difficult because of their large size and poor water solubility. Here we report improved production and assembly of the correctly folded full-length EGF receptor (EGFR) into nanolipoprotein particles (NLPs). NLPs are ~10 nm in diameter discoidal cell membrane mimics composed of apolipoproteins surrounding a lipid bilayer. NLPs containing EGFR were synthesized via incubation of baculovirus-produced recombinant EGFR with apolipoprotein and phosphoplipids under conditions that favor self-assembly. The resulting EGFR-NLPs were the correct size, formed dimers and multimers, had intrinsic autophosphorylation activity, and retained the ability to interact with EGFR-targeted ligands and inhibitors consistent with previously-published in vitro binding affinities. We anticipate rapid adoption of EGFR-NLPs for structural studies of full-length receptors and drug screening, as well as for the in vitro characterization of ErbB heterodimers and disease-relevant mutants.


Assuntos
Receptores ErbB/química , Receptores ErbB/genética , Bicamadas Lipídicas/química , Nanopartículas/química , Apolipoproteínas/biossíntese , Apolipoproteínas/química , Receptores ErbB/administração & dosagem , Humanos , Membranas Artificiais , Nanopartículas/administração & dosagem , Solubilidade , Água/química
7.
ACS Appl Mater Interfaces ; 8(32): 20549-57, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27411034

RESUMO

Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications.


Assuntos
Nanopartículas/química , Animais , Linhagem Celular Tumoral , Cromatografia em Gel , Humanos , Bicamadas Lipídicas , Camundongos , Fosfolipídeos
8.
PLoS One ; 11(1): e0146256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799320

RESUMO

We report herein the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formation and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Resistencia a Medicamentos Antineoplásicos/genética , Compostos Organoplatínicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/genética , Transporte Biológico/genética , Carboplatina/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Cisplatino/farmacologia , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Perfilação da Expressão Gênica , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Metotrexato/farmacologia , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacocinética , Oxaliplatina , Neoplasias da Bexiga Urinária/genética , Vimblastina/farmacologia , Gencitabina
9.
Cell Signal ; 27(7): 1336-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25843776

RESUMO

The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (-) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21(Cip1) and p27(Kip1) expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix-turn-helix-turn-helix-turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Complexo Repressor Polycomb 1/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/metabolismo , Domínios RING Finger , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
10.
Sci Rep ; 5: 12896, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26274523

RESUMO

Receptor tyrosine kinases (RTKs) play critical roles in physiological and pathological processes, and are important anticancer drug targets. In vitro mechanistic and drug discovery studies of full-length RTKs require protein that is both fully functional and free from contaminating proteins. Here we describe a rapid cell-free and detergent-free co-translation method for producing full-length and functional ERBB2 and EGFR receptor tyrosine kinases supported by water-soluble apolipoprotein A-I based nanolipoprotein particles.


Assuntos
Receptores Proteína Tirosina Quinases/metabolismo , Sistema Livre de Células
11.
J Invest Dermatol ; 134(7): 1811-1816, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24599174

RESUMO

Tazarotene-induced gene 3 (TIG3) is a tumor suppressor protein. In normal human epidermis, TIG3 is present in the differentiated, suprabasal layers, and it regulates terminal differentiation. TIG3 level is reduced in hyperproliferative diseases, including psoriasis and skin cancer, suggesting that loss of TIG3 is associated with enhanced cell proliferation. Moreover, transient expression of TIG3 leads to terminal differentiation in normal keratinocytes and apoptosis in skin cancer cells. In both cell types, TIG3 distributes to the cell membrane and to the centrosome. At the cell membrane, TIG3 interacts with and activates type I transglutaminase to enhance keratinocyte terminal differentiation. TIG3 at the centrosome acts to inhibit centrosome separation during mitosis and to alter microtubule function. These findings argue that TIG3 is involved in the control of keratinocyte differentiation and that loss of TIG3 in transformed cells contributes to the malignant phenotype.


Assuntos
Proliferação de Células , Queratinócitos/citologia , Queratinócitos/fisiologia , Psoríase/fisiopatologia , Receptores do Ácido Retinoico/fisiologia , Neoplasias Cutâneas/fisiopatologia , Animais , Sobrevivência Celular/fisiologia , Humanos , Psoríase/patologia , Neoplasias Cutâneas/patologia
12.
J Invest Dermatol ; 134(5): 1220-1229, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24401997

RESUMO

Tazarotene-induced gene 3 (TIG3) is a tumor suppressor protein that has a key role in controlling cell proliferation. TIG3 is observed at reduced levels in epidermal squamous cell carcinoma, and the restoration of expression in skin cancer cells reduces cell survival. TIG3 suppresses cell survival through mechanisms that involve localization at the plasma membrane and at the centrosome. TIG3 interacts at the plasma membrane to activate enzymes involved in keratinocyte terminal differentiation, and at the centrosome to inhibit daughter centrosome separation during mitosis leading to cessation of cell proliferation and induction of apoptosis. An important goal is identifying the motifs required for TIG3 localization at these intracellular sites as a method to understand the function of TIG3 at each location. TIG3 encodes an N-terminal hydrophilic region (amino acids 1-135) and a C-terminal membrane-anchoring domain (amino acids 135-164). We show that the C-terminal hydrophobic domain targets intact TIG3 to the plasma membrane, but when isolated as an independent element localizes at the mitochondria. We further demonstrate that a segment of the N-terminal hydrophilic region targets the centrosome. These studies provide important insights regarding the mechanisms that guide subcellular localization of this keratinocyte survival regulator.


Assuntos
Carcinoma de Células Escamosas/patologia , Transporte Proteico/fisiologia , Receptores do Ácido Retinoico/metabolismo , Neoplasias Cutâneas/patologia , Apoptose/fisiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Centrossomo/metabolismo , Citoplasma/metabolismo , Células Epidérmicas , Epiderme/fisiologia , Genes Supressores de Tumor/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Queratinócitos/citologia , Queratinócitos/metabolismo , Mitocôndrias/metabolismo , Estrutura Terciária de Proteína/fisiologia , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/fisiopatologia
13.
PLoS One ; 6(8): e23230, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858038

RESUMO

TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.


Assuntos
Apoptose , Organelas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Citoesqueleto de Actina/metabolismo , Adenoviridae/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Contagem de Células , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Centrômero/metabolismo , Ciclinas/metabolismo , Vetores Genéticos/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Microtúbulos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores do Ácido Retinoico/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transfecção , Proteínas Supressoras de Tumor/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA