Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Immunol ; 23(1): 86-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845392

RESUMO

Ineffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus. BMI-1 was upregulated by germinal center B cells in chronic viral infection, correlating with changes to the accessible chromatin landscape, compared to acute infection. B cell-intrinsic deletion of Bmi1 accelerated viral clearance, reduced splenomegaly and restored splenic architecture. Deletion of Bmi1 restored c-Myc expression in B cells, concomitant with improved quality of antibody and coupled with reduced antibody-secreting cell numbers. Specifically, BMI-1-deficiency induced antibody with increased neutralizing capacity and enhanced antibody-dependent effector function. Using a small molecule inhibitor to murine BMI-1, we could deplete antibody-secreting cells and prohibit detrimental immune complex formation in vivo. This study defines BMI-1 as a crucial immune modifier that controls antibody-mediated responses in chronic infection.


Assuntos
Linfócitos B/imunologia , Imunidade Humoral/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Complexo Repressor Polycomb 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Feminino , Centro Germinativo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
3.
Nat Immunol ; 21(3): 309-320, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953534

RESUMO

Tissue-resident memory T cells (TRM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway TRM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway TRM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce TRM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway TRM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung TRM cell populations and show that local environmental cues altered airway TRM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer TRM cells in the lung.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Epigênese Genética/imunologia , Memória Imunológica/genética , Pulmão/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/citologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Microambiente Celular/genética , Microambiente Celular/imunologia , Feminino , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia
4.
Immunity ; 56(8): 1844-1861.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478855

RESUMO

Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.


Assuntos
Psoríase , Linfócitos T Reguladores , Animais , Camundongos , PPAR gama , Interleucina-17 , Pele , Psoríase/induzido quimicamente , Inflamação , Obesidade
5.
Immunity ; 56(4): 847-863.e8, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36958335

RESUMO

Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) in vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Formação de Anticorpos , Células B de Memória , Vacinação , Memória Imunológica , Anticorpos Antivirais
6.
Nat Immunol ; 20(8): 1071-1082, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263277

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the expansion of extrafollicular pathogenic B cells derived from newly activated naive cells. Although these cells express distinct markers, their epigenetic architecture and how it contributes to SLE remain poorly understood. To address this, we determined the DNA methylomes, chromatin accessibility profiles and transcriptomes from five human B cell subsets, including a newly defined effector B cell subset, from subjects with SLE and healthy controls. Our data define a differentiation hierarchy for the subsets and elucidate the epigenetic and transcriptional differences between effector and memory B cells. Importantly, an SLE molecular signature was already established in resting naive cells and was dominated by enrichment of accessible chromatin in motifs for AP-1 and EGR transcription factors. Together, these factors acted in synergy with T-BET to shape the epigenome of expanded SLE effector B cell subsets. Thus, our data define the molecular foundation of pathogenic B cell dysfunction in SLE.


Assuntos
Subpopulações de Linfócitos B/patologia , Metilação de DNA/genética , Epigênese Genética/genética , Lúpus Eritematoso Sistêmico/genética , Subpopulações de Linfócitos B/imunologia , Montagem e Desmontagem da Cromatina/fisiologia , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Fator de Transcrição AP-1/genética , Transcriptoma/genética
7.
Nature ; 626(7998): 392-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086420

RESUMO

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Infecções por Paramyxoviridae , Sistema Respiratório , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Coletiva/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Células T de Memória/imunologia , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/virologia , Sistema Respiratório/citologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Transcrição Gênica , Humanos
8.
Immunity ; 52(1): 136-150.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940267

RESUMO

Effector CD8+ T cells are important mediators of adaptive immunity, and receptor-ligand interactions that regulate their survival may have therapeutic potential. Here, we identified a subset of effector CD8+ T cells that expressed the inhibitory fragment crystallizable (Fc) receptor FcγRIIB following activation and multiple rounds of division. CD8+ T cell-intrinsic genetic deletion of Fcgr2b increased CD8+ effector T cell accumulation, resulting in accelerated graft rejection and decreased tumor volume in mouse models. Immunoglobulin G (IgG) antibody was not required for FcγRIIB-mediated control of CD8+ T cell immunity, and instead, the immunosuppressive cytokine fibrinogen-like 2 (Fgl2) was a functional ligand for FcγRIIB on CD8+ T cells. Fgl2 induced caspase-3/7-mediated apoptosis in Fcgr2b+, but not Fcgr2b-/-, CD8+ T cells. Increased expression of FcγRIIB correlated with freedom from rejection following withdrawal from immunosuppression in a clinical trial of kidney transplant recipients. Together, these findings demonstrate a cell-intrinsic coinhibitory function of FcγRIIB in regulating CD8+ T cell immunity.


Assuntos
Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrinogênio/imunologia , Receptores de IgG/imunologia , Adulto , Idoso , Animais , Caspase 3/imunologia , Caspase 7/imunologia , Linhagem Celular Tumoral , Feminino , Fibrinogênio/genética , Rejeição de Enxerto/imunologia , Humanos , Imunoglobulina G/imunologia , Terapia de Imunossupressão , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de IgG/genética , Adulto Jovem
9.
Nat Immunol ; 17(10): 1216-1225, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27500631

RESUMO

The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.


Assuntos
Linfócitos B/fisiologia , Metilação de DNA , NF-kappa B/metabolismo , Plasmócitos/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Divisão Celular/genética , Células Cultivadas , Ilhas de CpG/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Imunidade Humoral/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Fator 2 de Transcrição de Octâmero/genética , Fator 2 de Transcrição de Octâmero/metabolismo , Fator de Transcrição AP-1/genética
10.
Immunity ; 50(5): 1172-1187.e7, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31076359

RESUMO

Although viral infections elicit robust interferon-γ (IFN-γ) and long-lived antibody-secreting cell (ASC) responses, the roles for IFN-γ and IFN-γ-induced transcription factors (TFs) in ASC development are unclear. We showed that B cell intrinsic expression of IFN-γR and the IFN-γ-induced TF T-bet were required for T-helper 1 cell-induced differentiation of B cells into ASCs. IFN-γR signaling induced Blimp1 expression in B cells but also initiated an inflammatory gene program that, if not restrained, prevented ASC formation. T-bet did not affect Blimp1 upregulation in IFN-γ-activated B cells but instead regulated chromatin accessibility within the Ifng and Ifngr2 loci and repressed the IFN-γ-induced inflammatory gene program. Consistent with this, B cell intrinsic T-bet was required for formation of long-lived ASCs and secondary ASCs following viral, but not nematode, infection. Therefore, T-bet facilitates differentiation of IFN-γ-activated inflammatory effector B cells into ASCs in the setting of IFN-γ-, but not IL-4-, induced inflammatory responses.


Assuntos
Linfócitos B/imunologia , Interferon gama/imunologia , Receptores de Interferon/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Células Produtoras de Anticorpos/imunologia , Linfócitos B/citologia , Diferenciação Celular/imunologia , Células Cultivadas , Cromatina/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nematospiroides dubius/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Proteínas com Domínio T/genética , Receptor de Interferon gama
11.
Nature ; 610(7930): 173-181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171288

RESUMO

Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Subunidade gama Comum de Receptores de Interleucina , Interleucina-2/imunologia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2 , Subunidade beta de Receptor de Interleucina-2 , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fator 1 de Transcrição de Linfócitos T
12.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314758

RESUMO

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Adulto Jovem
13.
Immunol Rev ; 300(1): 54-64, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278036

RESUMO

Antibody-secreting cells (ASCs) or plasma cells secrete antibodies and form a cornerstone of humoral immunity. B cells that receive activation signals in the presence or absence of T cells initiate a differentiation program that requires epigenetic and transcriptional reprogramming in order to ultimately form ASC. Reprogramming is accomplished through the interplay of transcription factors that initiate gene expression programs and epigenetic mechanisms that maintain these programs and cell fates. An important consideration is that all of these factors are operating in the context of cell division. Recent technical advances now allow mechanistic studies to move beyond genetic studies to identify the promoters and enhancer repertoires that are regulated by epigenetic mechanisms and transcription factors in rare cell types and differentiation stages in vivo. This review will detail efforts to integrate transcriptional and epigenetic changes during B cell differentiation with cell division in vivo. What has emerged is a multiphased differentiation model that requires distinct transcription factors and epigenetic programs at each step. The identification of markers that define each phase will help facilitate the manipulation of B cell differentiation for vaccine development or to treat diseases where antibodies are a component.


Assuntos
Sinais (Psicologia) , Plasmócitos , Diferenciação Celular/genética , Epigênese Genética , Ativação Linfocitária
14.
Immunol Rev ; 303(1): 8-22, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34010461

RESUMO

Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.


Assuntos
Células Produtoras de Anticorpos , Plasmócitos , Linfócitos B , Diferenciação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica
15.
Infect Immun ; 92(3): e0046123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345371

RESUMO

Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.


Assuntos
Antibacterianos , Clostridioides difficile , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Esporos Bacterianos , Regulação Bacteriana da Expressão Gênica , Farmacorresistência Bacteriana , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , Mamíferos
17.
J Immunol ; 208(9): 2141-2153, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418472

RESUMO

The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.


Assuntos
Genes de Imunoglobulinas , Centro Germinativo , Conversão Gênica , Genes de Imunoglobulinas/genética , Humanos , Mutagênese , Mutação
18.
J Immunol ; 208(8): 1873-1885, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346967

RESUMO

B cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [Utx fl/fl Jmjd3 fl/fl Cd19 cre/+] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll. This phenotype occurred in a UTX-dependent manner as UTX single-knockout mice, but not JMJD3 single-knockout mice, mimicked the dKO. Although UTX- and JMJD3-deficient marginal zone B cells showed increased proliferation, dKO follicular B cells also showed increased PC formation. PCs from dKO mice upregulated genes associated with oxidative phosphorylation and exhibited increased spare respiratory capacity. Mechanistically, deletion of Utx and Jmjd3 resulted in higher levels of H3K27me3 at proapoptotic genes and resulted in reduced apoptosis of dKO PCs in vivo. Furthermore, UTX regulated chromatin accessibility at regions containing ETS and IFN regulatory factor (IRF) transcription factor family motifs, including motifs of known repressors of PC fate. Taken together, these data demonstrate that the H3K27me3 demethylases restrain B cell differentiation.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Animais , Cromatina , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Camundongos , Plasmócitos/metabolismo
19.
J Immunol ; 209(9): 1778-1787, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162870

RESUMO

Lung tissue-resident memory T cells are crucial mediators of cellular immunity against respiratory viruses; however, their gradual decline hinders the development of T cell-based vaccines against respiratory pathogens. Recently, studies using adenovirus (Ad)-based vaccine vectors have shown that the number of protective lung-resident CD8+ TRMs can be maintained long term. In this article, we show that immunization of mice with a replication-deficient Ad serotype 5 expressing influenza (A/Puerto Rico/8/34) nucleoprotein (AdNP) generates a long-lived lung TRM pool that is transcriptionally indistinct from those generated during a primary influenza infection. In addition, we demonstrate that CD4+ T cells contribute to the long-term maintenance of AdNP-induced CD8+ TRMs. Using a lineage tracing approach, we identify alveolar macrophages as a cell source of persistent NP Ag after immunization with AdNP. Importantly, depletion of alveolar macrophages after AdNP immunization resulted in significantly reduced numbers of NP-specific CD8+ TRMs in the lungs and airways. Combined, our results provide further insight to the mechanisms governing the enhanced longevity of Ag-specific CD8+ lung TRMs observed after immunization with recombinant Ad.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Linfócitos T CD8-Positivos , Proteínas de Homeodomínio , Humanos , Memória Imunológica , Pulmão , Macrófagos Alveolares , Camundongos , Proteínas do Tecido Nervoso , Nucleoproteínas
20.
J Immunol ; 206(7): 1493-1504, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33627377

RESUMO

Memory B cells (MBCs) have enhanced capabilities to differentiate to plasma cells and generate a rapid burst of Abs upon secondary stimulation. To determine if MBCs harbor an epigenetic landscape that contributes to increased differentiation potential, we derived the chromatin accessibility and transcriptomes of influenza-specific IgM and IgG MBCs compared with naive cells. MBCs possessed an accessible chromatin architecture surrounding plasma cell-specific genes, as well as altered expression of transcription factors and genes encoding cell cycle, chemotaxis, and signal transduction processes. Intriguingly, this MBC signature was conserved between humans and mice. MBCs of both species possessed a heightened heme signature compared with naive cells. Differentiation in the presence of hemin enhanced oxidative phosphorylation metabolism and MBC differentiation into Ab-secreting plasma cells. Thus, these data define conserved MBC transcriptional and epigenetic signatures that include a central role for heme and multiple other pathways in augmenting MBC reactivation potential.


Assuntos
Linfócitos B/imunologia , Heme/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Diferenciação Celular , Reprogramação Celular , Modelos Animais de Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Imunidade Humoral , Memória Imunológica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA