Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 31(24): 8883-93, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677172

RESUMO

Adult mammalian auditory hair cells (HCs) and their associated supporting cells (SCs) do not proliferate, and HC death leads to irreversible neurosensory hearing loss and balance impairment. In nonmammalian vertebrates, loss of HCs induces mitotic proliferation of adjacent nonsensory SCs and/or direct SC transdifferentiation to generate replacement cells. This results in the structural and functional recovery of the nonmammalian sensory systems. Potential replacement of mammalian auditory HCs, either by transplanting cells or by transforming existing cells through molecular therapy, has long been proposed. However, HC replacement strategies with clear therapeutic potential remain elusive. The retinoblastoma (pRB) family of cell cycle regulators, Rb1, Rbl1 (p107), and Rbl2 (p130), regulate the G(1)- to S-phase transition in proliferating cells. In the inner ear, the biochemical and molecular pathways involving pRBs, particularly p107 and p130, are relatively unexplored and their therapeutic suitability is yet to be determined. In this study, we analyzed the cochleae of adult p130 knock-out (p130(-/-)) mice and showed that lack of the p130 gene results in extra rows of HCs and SCs in the more apical regions of the cochlea. No evidence of transdifferentiation of these supernumerary SCs into HCs was observed in the p130(-/-) mouse. Nevertheless, unscheduled proliferation of SCs in the adult p130(-/-) cochlea coupled to downregulation of bona fide cell cycle inhibitors provides a mechanistic basis for the role of p130 as a regulator of SC and HC mitotic quiescence in the more apical regions of the cochlea. Interestingly, p130(-/-) mice exhibited nearly normal peripheral auditory sensitivity.


Assuntos
Orelha Interna/citologia , Células Ciliadas Auditivas Internas/fisiologia , Células Labirínticas de Suporte/fisiologia , Proteína do Retinoblastoma/deficiência , Estimulação Acústica , Fatores Etários , Animais , Animais Recém-Nascidos , Proliferação de Células , Orelha Interna/embriologia , Embrião de Mamíferos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina VIIa , Miosinas/metabolismo , Emissões Otoacústicas Espontâneas/genética , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Tubulina (Proteína)/metabolismo
2.
Indian J Hum Genet ; 18(3): 310-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23716939

RESUMO

BACKGROUND: Orofacial clefts are common worldwide and result from insufficient growth and/or fusion during the genesis of the derivatives of the first pharyngeal arch and the frontonasal prominence. Recent studies in mice carrying conditional and tissue-specific deletions of the human ortholog Dicer1, an RNAse III family member, have highlighted its importance in cell survival, differentiation, proliferation, and morphogenesis. Nevertheless, information regarding Dicer1 and its dependent microRNAs (miRNAs) in mammalian palatogenesis and orofacial development is limited. AIMS: To describe the craniofacial phenotype, gain insight into potential mechanisms underlying the orofacial defects in the Pax2-Cre/Dicer1 CKO mouse, and shed light on the role of Dicer1 in mammalian palatogenesis. MATERIALS AND METHODS: Histological and molecular assays of wild type (WT) and Pax2-Cre/Dicer1(loxP/loxP) (Dicer1 CKO) mice dissected tissues have been performed to characterize and analyze the orofacial dysmorphism in Pax2-Cre/Dicer1(loxP/loxP) mouse. RESULTS: Dicer1 CKO mice exhibit late embryonic lethality and severe craniofacial dysmorphism, including a secondary palatal cleft. Further analysis suggest that Dicer1 deletion neither impacts primary palatal development nor the initial stages of secondary palatal formation. Instead, Dicer1 is implicated in growth, differentiation, mineralization, and survival of cells in the lateral palatal shelves. Histological and molecular analysis demonstrates that secondary palatal development becomes morphologically arrested prior to mineralization around E13.5 with a significant increase in the expression levels of apoptotic markers (P < 0.01). CONCLUSIONS: Pax2-Cre-mediated Dicer1 deletion disrupts lateral palatal outgrowth and bone mineralization during palatal shelf development, therefore providing a mammalian model for investigating the role of miRNA-mediated signaling pathways during palatogenesis.

3.
Indian J Hum Genet ; 2012 Sept; 18(3): 310-319
Artigo em Inglês | IMSEAR | ID: sea-145853

RESUMO

Background: Orofacial clefts are common worldwide and result from insufficient growth and/or fusion during the genesis of the derivatives of the first pharyngeal arch and the frontonasal prominence. Recent studies in mice carrying conditional and tissue-specific deletions of the human ortholog Dicer1, an RNAse III family member, have highlighted its importance in cell survival, differentiation, proliferation, and morphogenesis. Nevertheless, information regarding Dicer1 and its dependent microRNAs (miRNAs) in mammalian palatogenesis and orofacial development is limited. Aims: To describe the craniofacial phenotype, gain insight into potential mechanisms underlying the orofacial defects in the Pax2-Cre/Dicer1 CKO mouse, and shed light on the role of Dicer1 in mammalian palatogenesis. Materials And Methods: Histological and molecular assays of wild type (WT) and Pax2-Cre/Dicer1 loxP/loxP (Dicer1 CKO) mice dissected tissues have been performed to characterize and analyze the orofacial dysmorphism in Pax2-Cre/Dicer1 loxP/loxP mouse. Results: Dicer1 CKO mice exhibit late embryonic lethality and severe craniofacial dysmorphism, including a secondary palatal cleft. Further analysis suggest that Dicer1 deletion neither impacts primary palatal development nor the initial stages of secondary palatal formation. Instead, Dicer1 is implicated in growth, differentiation, mineralization, and survival of cells in the lateral palatal shelves. Histological and molecular analysis demonstrates that secondary palatal development becomes morphologically arrested prior to mineralization around E13.5 with a significant increase in the expression levels of apoptotic markers (P < 0.01). Conclusions: Pax2-Cre-mediated Dicer1 deletion disrupts lateral palatal outgrowth and bone mineralization during palatal shelf development, therefore providing a mammalian model for investigating the role of miRNA-mediated signaling pathways during palatogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA