Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Immunol Rev ; 320(1): 58-82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455333

RESUMO

Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/terapia , Anticorpos
2.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190392

RESUMO

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliais/metabolismo , Infecções por HIV/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
3.
Blood ; 143(6): 507-521, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048594

RESUMO

ABSTRACT: Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.


Assuntos
Leucemia Mieloide Aguda , Anticorpos de Cadeia Única , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T , Leucemia Mieloide Aguda/patologia , Imunoterapia Adotiva
4.
Blood ; 141(16): 2003-2015, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36696633

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown success in the treatment of hematopoietic malignancies; however, relapse remains a significant issue. To overcome this, we engineered "Orexi" CAR T cells to locally secrete a high-affinity CD47 blocker, CV1, at the tumor and treated tumors in combination with an orthogonally targeted monoclonal antibody. Traditional CAR T cells plus the antibody had an additive effect in xenograft models, and this effect was potentiated by CAR T-cell local CV1 secretion. Furthermore, OrexiCAR-secreted CV1 reversed the immunosuppression of myelomonocytoid cells both in vitro and within the tumor microenvironment. Local secretion of the CD47 inhibitor bypasses the CD47 sink found on all cells in the body and may prevent systemic toxicities. This combination of CAR T-cell therapy, local CD47 blockade, and orthogonal antibody may be a combinatorial strategy to overcome the limitations of each monotherapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Recidiva Local de Neoplasia , Neoplasias/patologia , Linfócitos T , Imunoterapia Adotiva , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
5.
Mol Psychiatry ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383769

RESUMO

CD33 is a transmembrane receptor expressed on cells of myeloid lineage and regulates innate immunity. CD33 is a risk factor for Alzheimer's disease (AD) and targeting CD33 has been a promising strategy drug development. However, the mechanism of CD33's action is poorly understood. Here we investigate the mechanism of anti-CD33 antibody HuM195 (Lintuzumab) and its single-chain variable fragment (scFv) and examine their therapeutic potential. Treatment with HuM195 full-length antibody or its scFv increased phagocytosis of ß-amyloid 42 (Aß42) in human microglia and monocytes. This activation of phagocytosis was driven by internalization and degradation of CD33, thereby downregulating its inhibitory signal. HumM195 transiently induced CD33 phosphorylation and its signaling via receptor dimerization. However, this signaling decayed with degradation of CD33. scFv binding to CD33 leads to a degradation of CD33 without detection of the CD33 dimerization and signaling. Moreover, we found that treatments with either HuM195 or scFv promotes the secretion of IL33, a cytokine implicated in microglia reprogramming. Importantly, recombinant IL33 potentiates the uptake of Aß42 in monocytes. Collectively, our findings provide unanticipated mechanistic insight into the role of CD33 signaling in both monocytes and microglia and define a molecular basis for the development of CD33-based therapy of AD.

6.
Blood ; 140(8): 861-874, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35427421

RESUMO

Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Animais , Anticorpos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Antígenos HLA-A , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T
7.
Nat Chem Biol ; 18(2): 216-225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34969970

RESUMO

Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias Experimentais , Pró-Fármacos , Receptores de Antígenos Quiméricos , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Immunol Immunother ; 72(11): 3773-3786, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37635172

RESUMO

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Feminino , Animais , Carcinoma Epitelial do Ovário/terapia , Neoplasias Ovarianas/terapia , Antígenos de Neoplasias , Linfócitos T , Proteínas WT1
9.
Mol Ther ; 29(12): 3398-3409, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217891

RESUMO

Cellular therapies are engineered using foreign and synthetic protein sequences, such as chimeric antigen receptors (CARs). The frequently observed humoral responses to CAR T cells result in rapid clearance, especially after re-infusions. There is an unmet need to protect engineered cells from host-versus-graft rejection, particularly for the advancement of allogeneic cell therapies. Here, utilizing the immunoglobulin G (IgG) protease "IdeS," we programmed CAR T cells to defeat humoral immune attacks. IdeS cleavage of host IgG averted Fc-dependent phagocytosis and lysis, and the residual F(ab')2 fragments remained on the surface, providing cells with an inert shield from additional IgG deposition. "Shield" CAR T cells efficiently cleaved cytotoxic IgG, including anti-CAR antibodies, detected in patient samples and provided effective anti-tumor activity in the presence of anti-cell IgG in vivo. This technology may be useful for repeated human infusions of engineered cells, more complex engineered cells, and expanding widespread use of "off-the-shelf" allogeneic cellular therapies.


Assuntos
Imunoglobulina G , Receptores de Antígenos Quiméricos , Humanos , Fagocitose , Receptores de Antígenos Quiméricos/metabolismo
10.
Cancer Immunol Immunother ; 70(5): 1189-1202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33123756

RESUMO

Identification of neoepitopes as tumor-specific targets remains challenging, especially for cancers with low mutational burden, such as ovarian cancer. To identify mutated human leukocyte antigen (HLA) ligands as potential targets for immunotherapy in ovarian cancer, we combined mass spectrometry analysis of the major histocompatibility complex (MHC) class I peptidomes of ovarian cancer cells with parallel sequencing of whole exome and RNA in a patient with high-grade serous ovarian cancer. Four of six predicted mutated epitopes capable of binding to HLA-A*02:01 induced peptide-specific T cell responses in blood from healthy donors. In contrast, all six peptides failed to induce autologous peptide-specific response by T cells in peripheral blood or tumor-infiltrating lymphocytes from ascites of the patient. Surprisingly, T cell responses against a low-affinity p53-mutant Y220C epitope were consistently detected in the patient with either unprimed or in vitro peptide-stimulated T cells even though the patient's primary tumor did not bear this mutation. Our results demonstrated that tumor heterogeneity and distinct immune microenvironments within a patient should be taken into consideration for identification of immunogenic neoantigens. T cell responses to a driver gene-derived p53 Y220C mutation in ovarian cancer warrant further study.


Assuntos
Antígenos de Neoplasias/metabolismo , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/metabolismo , Imunoterapia Adotiva/métodos , Mutação/genética , Neoplasias Ovarianas/imunologia , Linfócitos T/imunologia , Proteína Supressora de Tumor p53/metabolismo , Antígenos de Neoplasias/genética , Células Cultivadas , Epitopos de Linfócito T/genética , Feminino , Antígeno HLA-A2/genética , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
11.
Bioconjug Chem ; 32(4): 649-654, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33819023

RESUMO

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.


Assuntos
Engenharia Celular , Haptenos , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/química , Animais , Autorradiografia , Células HEK293 , Humanos , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Blood ; 123(21): 3296-304, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24723681

RESUMO

Acute and chronic leukemias, including CD34(+) CML cells, demonstrate increased expression of the Wilms tumor gene 1 product (WT1), making WT1 an attractive therapeutic target. However, WT1 is a currently undruggable, intracellular protein. ESKM is a human IgG1 T-cell receptor mimic monoclonal antibody directed to a 9-amino acid sequence of WT1 in the context of cell surface HLA-A*02. ESKM was therapeutically effective, alone and in combination with tyrosine kinase inhibitors (TKIs), against Philadelphia chromosome-positive acute leukemia in murine models, including a leukemia with the most common, pan-TKI, gatekeeper resistance mutation, T315I. ESKM was superior to the first-generation TKI, imatinib. Combination therapy with ESKM and TKIs was superior to either drug alone, capable of curing mice. ESKM showed no toxicity to human HLA-A*02:01(+) stem cells under the conditions of this murine model. These features of ESKM make it a promising nontoxic therapeutic agent for sensitive and resistant Ph(+) leukemias.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Tiazóis/uso terapêutico , Proteínas WT1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Dasatinibe , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antígeno HLA-A2/imunologia , Humanos , Masculino , Camundongos , Camundongos SCID
13.
Eur J Nucl Med Mol Imaging ; 42(11): 1700-1706, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26194713

RESUMO

PURPOSE: The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the "best-fit" parameters and model-derived quantities for optimizing biodistribution of intravenously injected (124)I-labeled antitumor antibodies. METHODS: As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as "A33") were performed in 11 colorectal cancer patients. Serial whole-body PET scans of (124)I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. RESULTS: Excellent agreement was observed between fitted and measured parameters of tumor uptake, "off-target" uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. CONCLUSION: This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting "best-fit" nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Modelos Biológicos , Terapia de Alvo Molecular , Tomografia por Emissão de Pósitrons , Medicina de Precisão , Animais , Anticorpos Monoclonais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Radioisótopos do Iodo , Cinética , Camundongos
15.
Blood ; 120(10): 2087-97, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22829630

RESUMO

Low linear energy transfer (LET) ionizing radiation (IR) is an important form of therapy for acute leukemias administered externally or as radioimmunotherapy. IR is also a potential source of DNA damage. High LET IR produces structurally different forms of DNA damage and has emerged as potential treatment of metastatic and hematopoietic malignancies. Therefore, understanding mechanisms of resistance is valuable. We created stable myeloid leukemia HL60 cell clones radioresistant to either γ-rays or α-particles to understand possible mechanisms in radioresistance. Cross-resistance to each type of IR was observed, but resistance to clustered, complex α-particle damage was substantially lower than to equivalent doses of γ-rays. The resistant phenotype was driven by changes in: apoptosis; late G2/M checkpoint accumulation that was indicative of increased genomic instability; stronger dependence on homology-directed repair; and more robust repair of DNA double-strand breaks and sublethal-type damage induced by γ-rays, but not by α-particles. The more potent cytotoxicity of α-particles warrants their continued investigation as therapies for leukemia and other cancers.


Assuntos
Partículas alfa/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA , Raios gama/efeitos adversos , Apoptose/genética , Apoptose/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Clonais , Relação Dose-Resposta à Radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células HL-60 , Humanos , Transferência Linear de Energia , RNA Interferente Pequeno/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
16.
Semin Immunol ; 22(3): 162-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20537908

RESUMO

Adoptive transfer of in vivo generated antigen-specific donor-derived T-cells is increasingly recognized as an effective approach for the treatment or prevention of EBV lymphomas and cytomegalovirus infections complicating allogeneic hematopoietic cell transplants. This review examines evidence from preclinical experiments and initial clinical trials to critically assess both the potential and current limitations of adoptive transfer of donor T-cells sensitized to selected minor alloantigens of the host or to peptide epitopes of proteins, differentially expressed by clonogenic leukemia cells, such as the Wilms tumor protein, WT-1, as a strategy to treat or prevent recurrence of leukemia in the post-transplant period.


Assuntos
Transferência Adotiva , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia/métodos , Leucemia , Linfócitos T/transplante , Transplante Homólogo/efeitos adversos , Sequência de Aminoácidos , Animais , Ensaios Clínicos como Assunto , Epitopos de Linfócito T/genética , Humanos , Leucemia/imunologia , Leucemia/prevenção & controle , Leucemia/terapia , Camundongos , Dados de Sequência Molecular , Prevenção Secundária , Proteínas WT1/genética , Proteínas WT1/imunologia
17.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256909

RESUMO

The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.

18.
Cancer Immunol Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959337

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTßR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTßR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.

19.
J Biol Chem ; 287(21): 17288-17296, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22461631

RESUMO

Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, and mutations in this protein cause familial Alzheimer Disease (FAD). However, little is known about how these mutations affect the active site of γ-secretase. Here, we show that PS1 mutations alter the S2 subsite within the active site of γ-secretase using a multiple photoaffinity probe approach called "photophore walking." Moreover, we developed a unique in vitro assay with a biotinylated recombinant Notch1 substrate and demonstrated that PS1 FAD mutations directly and significantly reduced γ-secretase activity for Notch1 cleavage. Substitution of the Notch Cys-1752 residue, which interacts with the S2 subsite, with Val, Met, or Ile has little effect on wild-type PS1 but leads to more efficient substrates for mutant PS1s. This study indicates that alteration of this S2 subsite plays an important role in determining the activity and specificity of γ-secretase for APP and Notch1 processing, which provides structural basis and insights on how certain PS1 FAD mutations lead to AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Doenças Genéticas Inatas/metabolismo , Mutação de Sentido Incorreto , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Domínio Catalítico , Doenças Genéticas Inatas/genética , Células HEK293 , Humanos , Presenilina-1/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo
20.
Blood ; 118(18): 4817-28, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21849486

RESUMO

We report the findings from the first 10 patients with chemotherapy-refractory chronic lymphocytic leukemia (CLL) or relapsed B-cell acute lymphoblastic leukemia (ALL) we have enrolled for treatment with autologous T cells modified to express 19-28z, a second-generation chimeric antigen (Ag) receptor specific to the B-cell lineage Ag CD19. Eight of the 9 treated patients tolerated 19-28z(+) T-cell infusions well. Three of 4 evaluable patients with bulky CLL who received prior conditioning with cyclophosphamide exhibited either a significant reduction or a mixed response in lymphadenopathy without concomitant development of B-cell aplasia. In contrast, one patient with relapsed ALL who was treated in remission with a similar T-cell dose developed a predicted B-cell aplasia. The short-term persistence of infused T cells was enhanced by prior cyclophosphamide administration and inversely proportional to the peripheral blood tumor burden. Further analyses showed rapid trafficking of modified T cells to tumor and retained ex vivo cytotoxic potential of CD19-targeted T cells retrieved 8 days after infusion. We conclude that this adoptive T-cell approach is promising and more likely to show clinical benefit in the setting of prior conditioning chemotherapy and low tumor burden or minimal residual disease. These studies are registered at www.clinicaltrials.org as #NCT00466531 (CLL protocol) and #NCT01044069 (B-ALL protocol).


Assuntos
Antígenos CD19/imunologia , Sobrevivência de Enxerto , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Linfócitos T/transplante , Adulto , Idoso , Antígenos CD19/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Sobrevivência de Enxerto/fisiologia , Humanos , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/imunologia , Masculino , Pessoa de Meia-Idade , Recidiva , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia , Transplante Autólogo , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA