RESUMO
PURPOSE: Surgical site infection (SSI) is a serious complication after cranioplasty. Due to the relatively frequent occurrence of post-cranioplasty SSI, the utility of autologous bone flap swab cultures surrounding cryopreservation as a reliable predictor has been the subject of an ongoing debate. This bicentric study aims to contribute to this topic by conducting an in-depth analysis of bone flaps obtained via decompressive craniectomies. This study had three major aims: assessments of 1) bacterial contamination of bone flaps after decompressive craniotomy, 2) impact of cryoconservation on contamination rates and 3) potential effectiveness of anti-infective treatment to reduce the germ load prior to cranioplasty. METHODS: Cryopreserved bone flaps from two centers were used. Microbiological cultivations of swabs prior to and after cryopreservation were taken and assessed for aerobic and anaerobic growth over a 14-day incubation period. Additionally, in a subset of bone flaps, swab testing was repeated after thorough rinsing with an anti-infectant (octenidine-phenoxyethanol) followed by saline. RESULTS: All 63 bone flaps (patients median age at surgery: 59 years) were obtained via decompressive craniectomies. Swabs done prior to cryopreservation revealed a 54% infection rate with Propionibacterium acnes being the most common microorganism in 65% of those cases. After thorough disinfection of the preserved bone flaps, all but one case showed no bacterial growth in swab testing. Furthermore, no relevant risk factors for bacterial contamination could be identified. CONCLUSION: This retrospective study showed the common presence of bacterial growth in cryopreserved bone flaps before and after freezing. Rinsing with octenidine-phenoxyethanol and saline effectively prevented bacterial growth in a notable percentage of cases, suggesting a potential strategy to reduce contamination. However, persistent bacterial growth in some cases underscores the need for further research to optimize antiseptic measures during autologous cranioplasty.
Assuntos
Criopreservação , Craniectomia Descompressiva , Retalhos Cirúrgicos , Infecção da Ferida Cirúrgica , Humanos , Criopreservação/métodos , Pessoa de Meia-Idade , Masculino , Feminino , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Craniectomia Descompressiva/métodos , Craniectomia Descompressiva/efeitos adversos , Adulto , Idoso , Propionibacterium acnes/isolamento & purificaçãoRESUMO
High attrition rates associated with drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies, our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates, and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model, finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia or toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model, we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.