Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(17): 4223-4225, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35799354

RESUMO

SUMMARY: The ongoing pandemic caused by SARS-CoV-2 emphasizes the importance of genomic surveillance to understand the evolution of the virus, to monitor the viral population, and plan epidemiological responses. Detailed analysis, easy visualization and intuitive filtering of the latest viral sequences are powerful for this purpose. We present CovRadar, a tool for genomic surveillance of the SARS-CoV-2 Spike protein. CovRadar consists of an analytical pipeline and a web application that enable the analysis and visualization of hundreds of thousand sequences. First, CovRadar extracts the regions of interest using local alignment, then builds a multiple sequence alignment, infers variants and consensus and finally presents the results in an interactive app, making accessing and reporting simple, flexible and fast. AVAILABILITY AND IMPLEMENTATION: CovRadar is freely accessible at https://covradar.net, its open-source code is available at https://gitlab.com/dacs-hpi/covradar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genômica , Mutação
2.
J Proteome Res ; 20(4): 2083-2088, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33661648

RESUMO

The study of microbiomes has gained in importance over the past few years and has led to the emergence of the fields of metagenomics, metatranscriptomics, and metaproteomics. While initially focused on the study of biodiversity within these communities, the emphasis has increasingly shifted to the study of (changes in) the complete set of functions available in these communities. A key tool to study this functional complement of a microbiome is Gene Ontology (GO) term analysis. However, comparing large sets of GO terms is not an easy task due to the deeply branched nature of GO, which limits the utility of exact term matching. To solve this problem, we here present MegaGO, a user-friendly tool that relies on semantic similarity between GO terms to compute the functional similarity between multiple data sets. MegaGO is high performing: Each set can contain thousands of GO terms, and results are calculated in a matter of seconds. MegaGO is available as a web application at https://megago.ugent.be and is installable via pip as a standalone command line tool and reusable software library. All code is open source under the MIT license and is available at https://github.com/MEGA-GO/.


Assuntos
Microbiota , Software , Biologia Computacional , Ontologia Genética , Metagenômica , Semântica
3.
Expert Rev Proteomics ; 16(5): 375-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002542

RESUMO

INTRODUCTION: The study of microbial communities based on the combined analysis of genomic and proteomic data - called metaproteogenomics - has gained increased research attention in recent years. This relatively young field aims to elucidate the functional and taxonomic interplay of proteins in microbiomes and its implications on human health and the environment. Areas covered: This article reviews bioinformatics methods and software tools dedicated to the analysis of data from metaproteomics and metaproteogenomics experiments. In particular, it focuses on the creation of tailored protein sequence databases, on the optimal use of database search algorithms including methods of error rate estimation, and finally on taxonomic and functional annotation of peptide and protein identifications. Expert opinion: Recently, various promising strategies and software tools have been proposed for handling typical data analysis issues in metaproteomics. However, severe challenges remain that are highlighted and discussed in this article; these include: (i) robust false-positive assessment of peptide and protein identifications, (ii) complex protein inference against a background of highly redundant data, (iii) taxonomic and functional post-processing of identification data, and finally, (iv) the assessment and provision of metrics and tools for quantitative analysis.


Assuntos
Análise de Dados , Metagenômica , Proteômica , Bases de Dados de Proteínas , Humanos , Proteoma/metabolismo , Ferramenta de Busca
4.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911965

RESUMO

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Fezes/microbiologia , Proteômica/métodos , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Laboratórios , Espectrometria de Massas , Peptídeos/química , Fluxo de Trabalho
5.
Nat Protoc ; 15(10): 3212-3239, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32859984

RESUMO

Metaproteomics, the study of the collective protein composition of multi-organism systems, provides deep insights into the biodiversity of microbial communities and the complex functional interplay between microbes and their hosts or environment. Thus, metaproteomics has become an indispensable tool in various fields such as microbiology and related medical applications. The computational challenges in the analysis of corresponding datasets differ from those of pure-culture proteomics, e.g., due to the higher complexity of the samples and the larger reference databases demanding specific computing pipelines. Corresponding data analyses usually consist of numerous manual steps that must be closely synchronized. With MetaProteomeAnalyzer and Prophane, we have established two open-source software solutions specifically developed and optimized for metaproteomics. Among other features, peptide-spectrum matching is improved by combining different search engines and, compared to similar tools, metaproteome annotation benefits from the most comprehensive set of available databases (such as NCBI, UniProt, EggNOG, PFAM, and CAZy). The workflow described in this protocol combines both tools and leads the user through the entire data analysis process, including protein database creation, database search, protein grouping and annotation, and results visualization. To the best of our knowledge, this protocol presents the most comprehensive, detailed and flexible guide to metaproteomics data analysis to date. While beginners are provided with robust, easy-to-use, state-of-the-art data analysis in a reasonable time (a few hours, depending on, among other factors, the protein database size and the number of identified peptides and inferred proteins), advanced users benefit from the flexibility and adaptability of the workflow.


Assuntos
Proteoma/análise , Proteômica/métodos , Análise de Dados , Bases de Dados de Proteínas , Microbiota , Peptídeos/química , Software , Fluxo de Trabalho
6.
PLoS One ; 15(11): e0241503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170893

RESUMO

To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform.


Assuntos
Metagenômica , Microbiota , Proteômica , Software , Inquéritos e Questionários , Sequência de Aminoácidos , Disbiose/microbiologia , Ontologia Genética , Peptídeos/análise , Peptídeos/química , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA