Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(11): e111210, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471636

RESUMO

Recent work reported the existence of a mammalian cell-autonomous antiviral defence based on RNA interference (RNAi), which relies on the accumulation of virus-derived small interfering RNAs (vsiRNAs) to guide the degradation of complementary viral RNAs. In a new study, Zhang et al (2022) find that, in infected mice, vsiRNAs can enter the bloodstream via their incorporation into extracellular vesicles (EVs) and confer sequence-specific antiviral activity to recipient cells, thus indicating that mammalian antiviral RNAi participates in both cell-autonomous and non-cell-autonomous host defence.


Assuntos
Antivirais , Vírus , Animais , Mamíferos/genética , Camundongos , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética
2.
PLoS Pathog ; 18(5): e1010530, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533151

RESUMO

Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Interferon Tipo I , Animais , Antivirais/metabolismo , Ebolavirus/metabolismo , Interferon Tipo I/metabolismo , Ribonucleoproteínas/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/genética
3.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250123

RESUMO

The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses, identifying highly conserved arginine residues 35 and 46 within the NS1 N terminus as being most critical not only for binding to and blocking activation of PKR but also for efficient virus propagation. Biochemical and Förster resonance energy transfer (FRET)-based interaction studies showed that mutation of R35 or R46 allowed formation of NS1 dimers but eliminated any detectable binding to PKR as well as to double-stranded RNA (dsRNA). Using in vitro and in vivo approaches to phenotypic restoration, we demonstrated the essential role of the NS1 N terminus for blocking PKR. The strong attenuation conferred by NS1 mutation R35A or R46A was substantially alleviated by stable knockdown of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR+/+ mice, but replicated to high titers in lungs of PKR-/- mice and caused lethal infections. These data not only establish the NS1 N terminus as highly critical for neutralization of PKR's antiviral activity but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle.IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase (PKR) by means of its nonstructural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identified arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR-/- mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence.


Assuntos
Aminoácidos/química , Vírus da Influenza A/química , Vírus da Influenza A/patogenicidade , Proteínas não Estruturais Virais/química , eIF-2 Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Ativação Enzimática , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Pulmão/virologia , Camundongos , Mutação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Virulência , Replicação Viral , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
4.
J Virol ; 89(11): 6009-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810542

RESUMO

UNLABELLED: Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE: In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral replication cycle. The report provides an intriguing example of how influenza virus exploits cellular structures and regulatory pathways, including intracellular transport mechanisms, to complete its replication cycle and maximize the production of infectious virus progeny.


Assuntos
Transporte Ativo do Núcleo Celular , Caspases/metabolismo , Vírus da Influenza A/fisiologia , Poro Nuclear/metabolismo , Ribonucleoproteínas/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
5.
mBio ; 4(5): e00601-13, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24105764

RESUMO

UNLABELLED: A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-ß promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. IMPORTANCE: Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to propagate. Robust replication of the H7N9 strain correlated with a low induction of antiviral beta interferon (IFN-ß), and cell-based studies indicated that this is due to efficient suppression of the IFN response by the viral NS1 protein. Thus, explanted human lung tissue appears to be a useful experimental model to explore the determinants facilitating cross-species transmission of the H7N9 virus to humans.


Assuntos
Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/virologia , Pulmão/virologia , Animais , Aves , Linhagem Celular , China , Humanos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Influenza Humana/imunologia , Influenza Humana/patologia , Interferon beta/imunologia , Pulmão/imunologia , Pulmão/patologia , Dados de Sequência Molecular , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA