Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 99, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331743

RESUMO

BACKGROUND: Flavonoids are plant specialised metabolites, which derive from phenylalanine and acetate metabolism. They possess a variety of beneficial characteristics for plants and humans. Several modification steps in the synthesis of tricyclic flavonoids cause for the amazing diversity of flavonoids in plants. The 2-oxoglutarate-dependent dioxygenases (2-ODDs) flavanone 3-hydroxylase (F3H, synonym FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS, synonym leucoanthocyanidin dioxygenase (LDOX)), catalyse oxidative modifications to the central C ring. They are highly similar and have been shown to catalyse, at least in part, each other's reactions. FLS and ANS have been identified as bifunctional enzymes in many species, including Arabidopsis thaliana, stressing the capability of plants to bypass missing or mutated reaction steps on the way to flavonoid production. However, little is known about such bypass reactions and the flavonoid composition of plants lacking all three central flavonoid 2-ODDs. RESULTS: To address this issue, we generated a f3h/fls1/ans mutant, as well as the corresponding double mutants and investigated the flavonoid composition of this mutant collection. The f3h/fls1/ans mutant was further characterised at the genomic level by analysis of a nanopore DNA sequencing generated genome sequence assembly and at the transcriptomic level by RNA-Seq analysis. The mutant collection established, including the novel double mutants f3h/fls1 and f3h/ans, was used to validate and analyse the multifunctionalities of F3H, FLS1, and ANS in planta. Metabolite analyses revealed the accumulation of eriodictyol and additional glycosylated derivatives in mutants carrying the f3h mutant allele, resulting from the conversion of naringenin to eriodictyol by flavonoid 3'-hydroxylase (F3'H) activity. CONCLUSIONS: We describe the in planta multifunctionality of the three central flavonoid 2-ODDs from A. thaliana and identify a bypass in the f3h/fls1/ans triple mutant that leads to the formation of eriodictyol derivatives. As (homo-)eriodictyols are known as bitter taste maskers, the annotated eriodictyol (derivatives) and in particular the observations made on their in planta production, could provide valuable insights for the creation of novel food supplements.


Assuntos
Arabidopsis , Flavanonas , Humanos , Arabidopsis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo
2.
Theor Appl Genet ; 136(8): 172, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439815

RESUMO

KEY MESSAGE: A homoeologous non-reciprocal translocation was identified in the major QTL for seed lignin content in the low lignin line SGDH14. The lignin biosynthetic gene PAL4 was deleted. Oilseed rape is a major oil crop and a valuable protein source for animal and human nutrition. Lignin is a non-digestible, major component of the seed coat with negative effect on sensory quality, bioavailability and usage of oilseed rape's protein. Hence, seed lignin reduction is of economic and nutritional importance. In this study, the major QTL for reduced lignin content found on chromosome C05 in the DH population SGDH14 x Express 617 was further examined. SGDH14 had lower seed lignin content than Express 617. Harvested seeds from a F2 population of the same cross were additionally field tested and used for seed quality analysis. The F2 population showed a bimodal distribution for seed lignin content. F2 plants with low lignin content had thinner seed coats compared to high lignin lines. Both groups showed a dark seed colour with a slightly lighter colour in the low lignin group indicating that a low lignin content is not necessarily associated with yellow seed colour. Mapping of genomic long-reads from SGDH14 against the Express 617 genome assembly revealed a homoeologous non-reciprocal translocation (HNRT) in the confidence interval of the major QTL for lignin content. A homologous A05 region is duplicated and replaced the C05 region in SGDH14. As consequence several genes located in the C05 region were lost in SGDH14. Thus, a HNRT was identified in the major QTL region for reduced lignin content in the low lignin line SGDH14. The most promising candidate gene related to lignin biosynthesis on C05, PAL4, was deleted.


Assuntos
Brassica napus , Lignina , Humanos , Mapeamento Cromossômico , Brassica napus/genética , Brassica napus/metabolismo , Locos de Características Quantitativas , Translocação Genética , Sementes/genética , Sementes/metabolismo
3.
Genes (Basel) ; 13(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885914

RESUMO

Rapeseed (Brassica napus L.) is an important oil crop and has the potential to serve as a highly productive source of protein. This protein exhibits an excellent amino acid composition and has high nutritional value for humans. Seed protein content (SPC) and seed oil content (SOC) are two complex quantitative and polygenic traits which are negatively correlated and assumed to be controlled by additive and epistatic effects. A reduction in seed glucosinolate (GSL) content is desired as GSLs cause a stringent and bitter taste. The goal here was the identification of genomic intervals relevant for seed GSL content and SPC/SOC. Mapping by sequencing (MBS) revealed 30 and 15 new and known genomic intervals associated with seed GSL content and SPC/SOC, respectively. Within these intervals, we identified known but also so far unknown putatively causal genes and sequence variants. A 4 bp insertion in the MYB28 homolog on C09 shows a significant association with a reduction in seed GSL content. This study provides insights into the genetic architecture and potential mechanisms underlying seed quality traits, which will enhance future breeding approaches in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Mapeamento Cromossômico , Genômica , Humanos , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo
4.
Front Plant Sci ; 12: 733762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721462

RESUMO

Flavonol synthase (FLS) is a key enzyme for the formation of flavonols, which are a subclass of the flavonoids. FLS catalyzes the conversion of dihydroflavonols to flavonols. The enzyme belongs to the 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily. We characterized the FLS gene family of Brassica napus that covers 13 genes, based on the genome sequence of the B. napus cultivar Express 617. The goal was to unravel which BnaFLS genes are relevant for seed flavonol accumulation in the amphidiploid species B. napus. Two BnaFLS1 homeologs were identified and shown to encode bifunctional enzymes. Both exhibit FLS activity as well as flavanone 3-hydroxylase (F3H) activity, which was demonstrated in vivo and in planta. BnaFLS1-1 and -2 are capable of converting flavanones into dihydroflavonols and further into flavonols. Analysis of spatio-temporal transcription patterns revealed similar expression profiles of BnaFLS1 genes. Both are mainly expressed in reproductive organs and co-expressed with the genes encoding early steps of flavonoid biosynthesis. Our results provide novel insights into flavonol biosynthesis in B. napus and contribute information for breeding targets with the aim to modify the flavonol content in rapeseed.

5.
Plants (Basel) ; 9(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867203

RESUMO

The flavonoid biosynthesis is a well-characterised model system for specialised metabolism and transcriptional regulation in plants. Flavonoids have numerous biological functions such as UV protection and pollinator attraction, but also biotechnological potential. Here, we present Knowledge-based Identification of Pathway Enzymes (KIPEs) as an automatic approach for the identification of players in the flavonoid biosynthesis. KIPEs combines comprehensive sequence similarity analyses with the inspection of functionally relevant amino acid residues and domains in subjected peptide sequences. Comprehensive sequence sets of flavonoid biosynthesis enzymes and knowledge about functionally relevant amino acids were collected. As a proof of concept, KIPEs was applied to investigate the flavonoid biosynthesis of the medicinal plant Croton tiglium on the basis of a transcriptome assembly. Enzyme candidates for all steps in the biosynthesis network were identified and matched to previous reports of corresponding metabolites in Croton species.

6.
Plants (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252268

RESUMO

High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step.

7.
J Integr Bioinform ; 16(3)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31145692

RESUMO

Combined awareness about the power and limitations of bioinformatics and molecular biology enables advanced research based on high-throughput data. Despite an increasing demand of scientists with a combined background in both fields, the education of dry and wet lab subjects are often still separated. This work describes an example of integrated education with a focus on genomics and transcriptomics. Participants learned computational and molecular biology methods in the same practical course. Peer-review was applied as a teaching method to foster cooperative learning of students with heterogeneous backgrounds. The positive evaluation results indicate that this approach was accepted by the participants and would likely be suitable for wider scale application.


Assuntos
Biologia Computacional/educação , Biologia Molecular/educação , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA