Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 8(6): 591-602, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17026483

RESUMO

AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Glicemia/metabolismo , Exercício Físico/fisiologia , Cardiopatias/enzimologia , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Complexos Multienzimáticos/efeitos dos fármacos , Músculo Esquelético/enzimologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos
2.
Genomics ; 83(6): 980-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15177552

RESUMO

DNA microarray technology is used to determine gene expression profiles of various cell types, especially abnormal cells, such as cancer. By contrast, relatively little attention has been given to expression profiling of normal tissues. Here we describe studies of gene expression in peripheral blood leukocytes (PBL) from normal individuals sampled multiple times over periods ranging from several weeks up to 6 months. We demonstrate stable patterns of gene expression that differ between individuals. Among the genes whose expression varies by individual is a group of genes responsive to interferon stimulation. Certain individuals ( approximately 10-20% of those tested) showed higher baseline levels and lower inducibility of these genes in response to in vitro interferon stimulation. These studies demonstrate the feasibility of using DNA microarrays to measure the variations in gene expression of PBL from different individuals in response to environmental and genetic factors.


Assuntos
Regulação da Expressão Gênica , Leucócitos/metabolismo , Perfilação da Expressão Gênica , Variação Genética , Humanos , Interferons/metabolismo , Lipopolissacarídeos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos
3.
Genomics ; 83(6): 989-99, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15177553

RESUMO

High-capacity methods for assessing gene function have become increasingly important because of the increasing number of newly identified genes emerging from large-scale genome sequencing and cDNA cloning efforts. We investigated the use of DNA microarrays to identify uncharacterized genes specifically involved in human T cell activation. Activation of human peripheral blood T lymphocytes induced significant changes in hundreds of transcripts, but most of these were not unique to T cell activation. Variation of experimental parameters and analysis techniques allowed better enrichment for gene expression changes unique to T cell activation. Best results were achieved by identification of genes that were most highly coregulated with the T-cell-specific transcript interleukin 2 (IL2) in a "compendium" of experiments involving both T cells and other cell types. Among the genes most highly coregulated with IL2 were many genes known to function during T cell activation, together with ESTs of unknown function. Four of these ESTs were extended to novel full-length clones encoding T-cell-regulated proteins with predicted functions in GTP metabolism, cell organization, and signal transduction.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ativação Linfocitária/genética , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T/metabolismo , Sequência de Bases , Etiquetas de Sequências Expressas , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-2/genética , Dados de Sequência Molecular , Transdução de Sinais/genética
4.
Cell ; 116(1): 121-37, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14718172

RESUMO

Modern medicine faces the challenge of developing safer and more effective therapies to treat human diseases. Many drugs currently in use were discovered without knowledge of their underlying molecular mechanisms. Understanding their biological targets and modes of action will be essential to design improved second-generation compounds. Here, we describe the use of a genome-wide pool of tagged heterozygotes to assess the cellular effects of 78 compounds in Saccharomyces cerevisiae. Specifically, lanosterol synthase in the sterol biosynthetic pathway was identified as a target of the antianginal drug molsidomine, which may explain its cholesterol-lowering effects. Further, the rRNA processing exosome was identified as a potential target of the cell growth inhibitor 5-fluorouracil. This genome-wide screen validated previously characterized targets or helped identify potentially new modes of action for over half of the compounds tested, providing proof of this principle for analyzing the modes of action of clinically relevant compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genoma Fúngico , Heterozigoto , Saccharomyces cerevisiae/efeitos dos fármacos , Fluoruracila/farmacologia , Perfilação da Expressão Gênica/métodos , Transferases Intramoleculares/efeitos dos fármacos , Transferases Intramoleculares/metabolismo , Molsidomina/farmacologia , Valor Preditivo dos Testes , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA