Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(1): 206-19, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23161671

RESUMO

Mature dendritic cells (DC), activated lymphocytes, mononuclear cells and neutrophils express CD83, a surface protein apparently necessary for effective DC-mediated activation of naïve T-cells and T-helper cells, thymic T-cell maturation and the regulation of B-cell activation and homeostasis. Although a defined ligand of CD83 remains elusive, the multiple cellular subsets expressing CD83, as well as its numerous potential implications in immunological processes suggest that CD83 plays an important regulatory role in the mammalian immune system. Lately, nucleocytoplasmic translocation of CD83 mRNA was shown to be mediated by direct interaction between the shuttle protein HuR and a novel post-transcriptional regulatory element (PRE) located in the CD83 transcript's coding region. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export through the CRM1 protein translocation pathway. More recently, the cellular phosphoprotein and HuR ligand ANP32B (APRIL) was demonstrated to be directly involved in this intracellular transport process by linking the CD83 mRNA:HuR ribonucleoprotein (RNP) complex with the CRM1 export receptor. Casein kinase II regulates this process by phosphorylating ANP32B. Here, we identify another RNA binding protein, AUF1 (hnRNP D) that directly interacts with CD83 PRE. Unlike HuR:PRE binding, this interaction has no impact on intracellular trafficking of CD83 mRNA-containing complexes; but it does regulate translation of CD83 mRNA. Thus, our data shed more light on the complex process of post-transcriptional regulation of CD83 expression. Interfering with this process may provide a novel strategy for inhibiting CD83, and thereby cellular immune activation.


Assuntos
Antígenos CD/genética , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Imunoglobulinas/genética , Glicoproteínas de Membrana/genética , Biossíntese de Proteínas , Animais , Antígenos CD/biossíntese , Antígenos CD/metabolismo , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Imunoglobulinas/biossíntese , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Interferência de RNA , Sequências Reguladoras de Ácido Ribonucleico , Antígeno CD83
2.
Am J Med Genet A ; 164A(3): 563-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443315

RESUMO

The neurofibromatoses (NF) are autosomal dominant genetic disorders that encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect more people worldwide than Duchenne muscular dystrophy and Huntington's disease combined. NF1 and NF2 are caused by mutations of known tumor suppressor genes (NF1 and NF2, respectively). For schwannomatosis, although mutations in SMARCB1 were identified in a subpopulation of schwannomatosis patients, additional causative gene mutations are still to be discovered. Individuals with NF1 may demonstrate manifestations in multiple organ systems, including tumors of the nervous system, learning disabilities, and physical disfigurement. NF2 ultimately can cause deafness, cranial nerve deficits, and additional severe morbidities caused by tumors of the nervous system. Unmanageable pain is a key finding in patients with schwannomatosis. Although today there is no marketed treatment for NF-related tumors, a significant number of clinical trials have become available. In addition, significant preclinical efforts have led to a more rational selection of potential drug candidates for NF trials. An important element in fueling this progress is the sharing of knowledge. For over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share novel findings, ideas, and build collaborations. The 2012 NF Conference held in New Orleans hosted over 350 NF researchers and clinicians. This article provides a synthesis of the highlights presented at the conference and as such, is a "state-of-the-field" for NF research in 2012.


Assuntos
Neurilemoma/etiologia , Neurofibromatoses/etiologia , Neurofibromatose 1/etiologia , Neurofibromatose 2/etiologia , Neoplasias Cutâneas/etiologia , Humanos , Neurilemoma/genética , Neurilemoma/terapia , Neurofibromatoses/genética , Neurofibromatoses/terapia , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Neurofibromatose 2/genética , Neurofibromatose 2/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia
3.
PLoS One ; 6(8): e23290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829725

RESUMO

Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naïve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1-3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein:RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway.


Assuntos
ADP-Ribosil Ciclase 1/genética , Proteínas ELAV/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Primers do DNA , Humanos , Ativação Linfocitária , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
4.
J Biol Chem ; 281(16): 10912-25, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16484227

RESUMO

Dendritic cells are the most potent of the antigen-presenting cells and are characterized by surface expression of CD83. Here, we show that the coding region of CD83 mRNA contains a novel cis-acting structured RNA element that binds to HuR, a member of the ELAV family of AU-rich element RNA-binding proteins. Transient transfection of mammalian cells demonstrated that this CD83 mRNA-derived element acts as a post-transcriptional regulatory element in cells overexpressing HuR. Notably, binding of HuR to the CD83 post-transcriptional regulatory element did not affect mRNA stability. Using RNA interference, we show that HuR mediated efficient expression of CD83. In particular, HuR was required for cytoplasmic accumulation of CD83 transcripts. Likewise, inhibition of the CRM1 nuclear export pathway by leptomycin B or overexpression of a defective form of the nucleoporin Nup214/CAN diminished cytoplasmic CD83 mRNA levels. In summary, the data presented demonstrate that the HuR-CRM1 axis affects the nucleocytoplasmic translocation of CD83 mRNA under regular physiological conditions.


Assuntos
Antígenos CD/biossíntese , Antígenos de Superfície/fisiologia , Regulação da Expressão Gênica , Imunoglobulinas/biossíntese , Carioferinas/fisiologia , Glicoproteínas de Membrana/biossíntese , Proteínas de Ligação a RNA/fisiologia , RNA/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Ácidos Graxos Insaturados/farmacologia , Inativação Gênica , Genes Reporter , Vetores Genéticos , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Células Jurkat , Cinética , Luciferases/metabolismo , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Reação em Cadeia da Polimerase , Ligação Proteica , Biossíntese de Proteínas , Transporte Proteico , RNA/química , RNA/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína Exportina 1 , Antígeno CD83
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA