Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

2.
BMC Biol ; 22(1): 67, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504308

RESUMO

BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/genética , Olho/anatomia & histologia , Especificidade da Espécie
3.
J Synchrotron Radiat ; 31(Pt 1): 150-161, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117694

RESUMO

Third- and fourth-generation synchrotron light sources with high fluxes and beam energies enable the use of innovative X-ray translucent experimental apparatus. These experimental devices access geologically relevant conditions whilst enabling in situ characterization using the spatial and temporal resolutions accessible at imaging beamlines. Here, Heitt Mjölnir is introduced, a heated miniature triaxial rig based on the design of Mjölnir, but covering a wider temperature range and larger sample volume at similar pressure capacities. This device is designed to investigate coupled thermal, chemical, hydraulic and mechanical processes from grain to centimetre scales using cylindrical samples of 10 mm × 20 mm (diameter × length). Heitt Mjölnir can simultaneously reach confining (hydraulic) pressures of 30 MPa and 500 MPa of axial stress with independently controlled sample pore fluid pressure < 30 MPa. This internally heated apparatus operates to temperatures up to 573 K with a minimal vertical thermal gradient in the sample of <0.3 K mm-1. This new apparatus has been deployed in operando studies at the TOMCAT (Swiss Light Source), I12 JEEP (Diamond Light Source) and PSICHÉ (Synchrotron SOLEIL) beamlines for 4D X-ray microtomography with scan intervals of a few minutes. Heitt Mjölnir is portable and modular, allowing a wide range of 4D characterizations of low-grade metamorphism and deformational processes. It enables spatially and temporally resolved fluid-rock interaction studies at conditions of crustal reservoirs and is suitable for characterization of material properties in geothermal, carbonation or subsurface gas storage applications. Technical drawings and an operation guide are included in this publication.

4.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904652

RESUMO

Modern bony fishes possess a high morphological diversity in their auditory structures and auditory capabilities. Yet, how auditory structures such as the otoliths in the inner ears and the swim bladder work together remains elusive. Gathering experimental evidence on the in situ motion of fish auditory structures while avoiding artifacts caused by surgical exposure of the structures has been challenging for decades. Synchrotron radiation-based tomography with high spatio-temporal resolution allows the study of morphofunctional issues non-invasively in an unprecedented way. We therefore aimed to develop an approach that characterizes the moving structures in 4D (=three spatial dimensions+time). We designed a miniature standing wave tube-like setup to meet both the requirements of tomography and those of tank acoustics. With this new setup, we successfully visualized the motion of isolated otoliths and the auditory structures in zebrafish (Danio rerio) and glass catfish (Kryptopterus vitreolus).


Assuntos
Audição , Peixe-Zebra , Animais , Membrana dos Otólitos , Som , Tomografia
5.
Appl Opt ; 61(13): 3850-3854, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256429

RESUMO

Precisely aligned optical components are crucial prerequisites for X-ray tomography at high resolution. We propose a device with a fractal pattern for precise automatic focusing. The device is etched in a Si substrate by deep reactive ion etching and then filled by a self-terminating bottom-up Au electroplating process. The fractal nature of the device produces an X-ray transmission image with globally homogeneous macroscopic visibility and high local contrast for pixel sizes in the range of 0.165 µm to 11 µm, while the high absorption contrast provided between Au and Si enables its use for X-ray energies ranging from 12 keV to 40 keV.

6.
Histochem Cell Biol ; 155(2): 215-226, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32189111

RESUMO

In this article, we present an X-ray tomographic imaging method that is well suited for pulmonary disease studies in animal models to resolve the full pathway from gas intake to gas exchange. Current state-of-the-art synchrotron-based tomographic phase-contrast imaging methods allow for three-dimensional microscopic imaging data to be acquired non-destructively in scan times of the order of seconds with good soft tissue contrast. However, when studying multi-scale hierarchically structured objects, such as the mammalian lung, the overall sample size typically exceeds the field of view illuminated by the X-rays in a single scan and the necessity for achieving a high spatial resolution conflicts with the need to image the whole sample. Several image stitching and calibration techniques to achieve extended high-resolution fields of view have been reported, but those approaches tend to fail when imaging non-stable samples, thus precluding tomographic measurements of large biological samples, which are prone to degradation and motion during extended scan times. In this work, we demonstrate a full-volume three-dimensional reconstruction of an intact rat lung under immediate post-mortem conditions and at an isotropic voxel size of (2.75 µm)3. We present the methodology for collecting multiple local tomographies with 360° extended field of view scans followed by locally non-rigid volumetric stitching. Applied to the lung, it allows to resolve the entire pulmonary structure from the trachea down to the parenchyma in a single dataset. The complete dataset is available online ( https://doi.org/10.16907/7eb141d3-11f1-47a6-9d0e-76f8832ed1b2 ).


Assuntos
Imageamento Tridimensional , Pneumopatias/patologia , Tomografia Computadorizada por Raios X , Animais , Pneumopatias/metabolismo , Ratos , Ratos Wistar
7.
Small ; 16(31): e2000746, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567135

RESUMO

Metal-based nanoparticles are clinically used for diagnostic and therapeutic applications. After parenteral administration, they will distribute throughout different organs. Quantification of their distribution within tissues in the 3D space, however, remains a challenge owing to the small particle diameter. In this study, synchrotron radiation-based hard X-ray tomography (SRµCT) in absorption and phase contrast modes is evaluated for the localization of superparamagnetic iron oxide nanoparticles (SPIONs) in soft tissues based on their electron density and X-ray attenuation. Biodistribution of SPIONs is studied using zebrafish embryos as a vertebrate screening model. This label-free approach gives rise to an isotropic, 3D, direct space visualization of the entire 2.5 mm-long animal with a spatial resolution of around 2 µm. High resolution image stacks are available on a dedicated internet page (http://zebrafish.pharma-te.ch). X-ray tomography is combined with physico-chemical characterization and cellular uptake studies to confirm the safety and effectiveness of protective SPION coatings. It is demonstrated that SRµCT provides unprecedented insights into the zebrafish embryo anatomy and tissue distribution of label-free metal oxide nanoparticles.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Animais , Óxidos , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Peixe-Zebra
8.
J Anat ; 237(4): 689-703, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533567

RESUMO

Parasitic wasps use specialized needle-like structures, ovipositors, to drill into substrates to reach hidden hosts. The external ovipositor (terebra) consists of three interconnected, sliding elements (valvulae), which are moved reciprocally during insertion. This presumably reduces the required pushing force on the terebra and limits the risk of damage whilst probing. Although this is an important mechanism, it is still not completely understood how the actuation of the valvulae is achieved, and it has only been studied with the ovipositor in rest position. Additionally, very little is known about the magnitude of the forces generated during probing. We used synchrotron X-ray microtomography to reconstruct the actuation mechanism of the parasitic wasp Diachasmimorpha longicaudata (Braconidae) in four distinct phases of the probing cycle. We show that only the paired first valvulae of the terebra move independently, while the second valvula moves with the metasoma ('abdomen'). The first valvula movements are initiated by rotation of one chitin plate (first valvifer) with respect to another such plate (second valvifer). This is achieved indirectly by muscles connecting the non-rotating second valvifer and the abdominal ninth tergite. Contrary to previous reports, we found muscle fibres running inside the terebra, although their function remains unclear. The estimated maximal forces that can be exerted by the first valvulae are small (protraction 1.19 mN and retraction 0.874 mN), which reduces the risk of buckling, but are sufficient for successful probing. The small net forces of the valvulae on the substrate may still lead to buckling of the terebra; we show that the sheaths surrounding the valvulae prevent this by effectively increasing the diameter and second moment of area of the terebra. Our findings improve the comprehension of hymenopteran probing mechanisms, the function of the associated muscles, and the forces and damage-limiting mechanism that are involved in drilling a slender terebra into a substrate.


Assuntos
Abdome/diagnóstico por imagem , Oviposição/fisiologia , Parasitos/fisiologia , Vespas/fisiologia , Animais , Feminino , Microtomografia por Raio-X
9.
J Synchrotron Radiat ; 24(Pt 6): 1250-1259, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091068

RESUMO

Owing to recent developments in CMOS technology, it is now possible to exploit tomographic microscopy at third-generation synchrotron facilities with unprecedented speeds. Despite this rapid technical progress, one crucial limitation for the investigation of realistic dynamic systems has remained: a generally short total acquisition time at high frame rates due to the limited internal memory of available detectors. To address and solve this shortcoming, a new detection and readout system, coined GigaFRoST, has been developed based on a commercial CMOS sensor, acquiring and streaming data continuously at 7.7 GB s-1 directly to a dedicated backend server. This architecture allows for dynamic data pre-processing as well as data reduction, an increasingly indispensable step considering the vast amounts of data acquired in typical fast tomographic experiments at synchrotron beamlines (up to several tens of TByte per day of raw data).

10.
Nanotechnology ; 27(37): 374002, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27505613

RESUMO

We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

11.
Phys Chem Chem Phys ; 18(2): 1225-32, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26661405

RESUMO

Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.


Assuntos
Colesterol/química , Umidade , Lipídeos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
12.
J Synchrotron Radiat ; 21(Pt 6): 1252-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343792

RESUMO

Novel X-ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full-field hard X-ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub-nanometer height sensitivity. Sub-second X-ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.

13.
Heliyon ; 10(4): e26025, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384517

RESUMO

The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (µCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own µCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.

14.
Adv Sci (Weinh) ; 11(21): e2308811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520713

RESUMO

Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress-relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.


Assuntos
Cartilagem Articular , Síncrotrons , Animais , Bovinos , Cartilagem Articular/diagnóstico por imagem , Estudo de Prova de Conceito , Articulação do Joelho/diagnóstico por imagem , Menisco/diagnóstico por imagem , Fenômenos Biomecânicos , Tecido Conjuntivo/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Estresse Mecânico
15.
Commun Biol ; 7(1): 157, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326549

RESUMO

The characterization of the vibrations of the middle ear ossicles during sound transmission is a focal point in clinical research. However, the small size of the structures, their micrometer-scale movement, and the deep-seated position of the middle ear within the temporal bone make these types of measurements extremely challenging. In this work, dynamic synchrotron-based X-ray phase-contrast microtomography is used on acoustically stimulated intact human ears, allowing for the three-dimensional visualization of entire human eardrums and ossicular chains in motion. A post-gating algorithm is used to temporally resolve the fast micromotions at 128 Hz, coupled with a high-throughput pipeline to process the large tomographic datasets. Seven ex-vivo fresh-frozen human temporal bones in healthy conditions are studied, and the rigid body motions of the ossicles are quantitatively delineated. Clinically relevant regions of the ossicular chain are tracked in 3D, and the amplitudes of their displacement are computed for two acoustic stimuli.


Assuntos
Imageamento Tridimensional , Síncrotrons , Humanos , Raios X , Orelha Média/diagnóstico por imagem , Ossículos da Orelha/diagnóstico por imagem
16.
Cells ; 12(19)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830589

RESUMO

(1) Background: Stereological estimations significantly contributed to our understanding of lung anatomy and physiology. Taking stereology fully 3-dimensional facilitates the estimation of novel parameters. (2) Methods: We developed a protocol for the analysis of all airspaces of an entire lung. It includes (i) high-resolution synchrotron radiation-based X-ray tomographic microscopy, (ii) image segmentation using the free machine-learning tool Ilastik and ImageJ, and (iii) calculation of the airspace diameter distribution using a diameter map function. To evaluate the new pipeline, lungs from adult mice with cystic fibrosis (CF)-like lung disease (ßENaC-transgenic mice) or mice with elastase-induced emphysema were compared to healthy controls. (3) Results: We were able to show the distribution of airspace diameters throughout the entire lung, as well as separately for the conducting airways and the gas exchange area. In the pathobiological context, we observed an irregular widening of parenchymal airspaces in mice with CF-like lung disease and elastase-induced emphysema. Comparable results were obtained when analyzing lungs imaged with µCT, sugges-ting that our pipeline is applicable to different kinds of imaging modalities. (4) Conclusions: We conclude that the airspace diameter map is well suited for a detailed analysis of unevenly distri-buted structural alterations in chronic muco-obstructive lung diseases such as cystic fibrosis and COPD.


Assuntos
Fibrose Cística , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fibrose Cística/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Elastase Pancreática
17.
J Colloid Interface Sci ; 626: 416-425, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35803141

RESUMO

HYPOTHESIS: Wicking flow in the wale direction of knit fabrics is slowed by capillary pressure minima during the transition at yarn contacts. The characteristic pore structure of yarns leads to an unfavorable free energy evolution and is the cause of these minima. EXPERIMENTS: Time-resolved synchrotron tomographic microscopy is employed to study the evolution of water configuration during wicking flow in interlacing yarns. Dynamic pore network modeling is used based on the obtained image data and distributions of delay times for pore intrusion. Good agreement is observed by comparison to the experimental data. FINDINGS: Yarn-to-yarn transition is found to coincide with slow water advance in a thin interface zone at the yarn contact. The pore spaces of the two yarns merge within this interface zone and provide a transition path. A deep capillary pressure minimum occurs while water passes through the center of the interface zone, effectively delaying the wicking flow. A pore network model considering pore intrusion delay times is expanded to include inter-yarn wicking and reproduce the observed wicking dynamics.


Assuntos
Têxteis , Água , Ação Capilar
18.
Zool Stud ; 61: e51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568820

RESUMO

Bursinia genei (Dufour, 1849) is the most widespread species of the planthopper subfamily Orgeriinae (Hemiptera: Fulgoromorpha: Dictyopharidae) in Europe, found from the Iberian Peninsula to the Western Balkans. However, its diagnostically important genitalia and biology have been insufficiently described. We employ state-of-the-art synchrotron X-ray microtomography and photomicrography to re-describe B. genei, and to study the morphology of both its sexes in unprecedented detail. By examining specimens from across the distribution of B. genei, we find that they probably belong to a single, broadly distributed morphospecies. Our morphological examination allowed us to make inferences on its jumping mechanism and capacity for vibrational communication. We also record B. genei for the first time from Greece, further extending the range of this elusive species. Detailed information on the habitat of B. genei is also provided.

19.
J Colloid Interface Sci ; 625: 1-11, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35714401

RESUMO

The spontaneous imbibition of a liquid within porous media, known as wicking, can display uncommon features in textiles and yarns. Yarns exhibited step-wise wicking dynamics not captured by current models. HYPOTHESIS: Wicking dynamics in yarns not only depend on inter-fiber pore filling, but are mainly determined by the pore-to-pore transition processes and the structure of the pore network. EXPERIMENTS: Fast X-ray tomographic microscopy is employed to reveal the pore scale processes and neutron radiography for the macroscopic water uptake in yarns. A semi-empirical pore network model is presented that employs the measured pore network topology and pore scale dynamics to reproduce the experimentally observed wicking dynamics in yarns. FINDINGS: The yarn pore system is a sparse network of long and narrow pores that promotes step-wise uptake dynamics. Wicking in yarns displays fast pore filling events in the order of seconds and long waiting times between filling events up to several minutes while navigating the pore network. As main result, we find that a few filling events directly determine the macroscopic behavior of wicking in the sparse pore network of yarns. It is necessary to consider pore-to-pore transition waiting times and the pore network structure to explain the characteristics of wicking dynamics in yarns.


Assuntos
Têxteis , Ação Capilar
20.
Front Cardiovasc Med ; 9: 1023483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620622

RESUMO

Introduction: Cardiac architecture has been extensively investigated ex vivo using a broad spectrum of imaging techniques. Nevertheless, the heart is a dynamic system and the structural mechanisms governing the cardiac cycle can only be unveiled when investigating it as such. Methods: This work presents the customization of an isolated, perfused heart system compatible with synchrotron-based X-ray phase contrast imaging (X-PCI). Results: Thanks to the capabilities of the developed setup, it was possible to visualize a beating isolated, perfused rat heart for the very first time in 4D at an unprecedented 2.75 µm pixel size (10.6 µm spatial resolution), and 1 ms temporal resolution. Discussion: The customized setup allows high-spatial resolution studies of heart architecture along the cardiac cycle and has thus the potential to serve as a tool for the characterization of the structural dynamics of the heart, including the effects of drugs and other substances able to modify the cardiac cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA