RESUMO
Effective radiation therapy aims to maximize the radiation dose delivered to the tumor while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this paper, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and MRI-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 ± 2 mm anterior-posterior.
RESUMO
PURPOSE: Develop a deflectable intracardiac MR imaging (ICMRI) guiding-sheath to accelerate imaging during MR-guided electrophysiological (EP) interventions for radiofrequency (500 kHz) ablation (RFA) of arrythmia. Requirements include imaging at three to five times surface-coil SNR in cardiac chambers, vascular insertion, steerable-active-navigation into cardiac chambers, operation with ablation catheters, and safe levels of MR-induced heating. METHODS: ICMRI's 6 mm outer-diameter (OD) metallic-braided shaft had a 2.6 mm OD internal lumen for ablation-catheter insertion. Miniature-Baluns (MBaluns) on ICMRI's 1 m shaft reduced body-coil-induced heating. Distal section was a folded "star"-shaped imaging-coil mounted on an expandable frame, with an integrated miniature low-noise-amplifier overcoming cable losses. A handle-activated movable-shaft expanded imaging-coil to 35 mm OD for imaging within cardiac-chambers. Four MR-tracking micro-coils enabled navigation and motion-compensation, assuming a tetrahedron-shape when expanded. A second handle-lever enabled distal-tip deflection. ICMRI with a protruding deflectable EP catheter were used for MR-tracked navigation and RFA using a dedicated 3D-slicer user-interface. ICMRI was tested at 3T and 1.5T in swine to evaluate (a) heating, (b) cardiac-chamber access, (c) imaging field-of-view and SNR, and (d) intraprocedural RFA lesion monitoring. RESULTS: The 3T and 1.5T imaging SNR demonstrated >400% SNR boost over a 4 × 4 × 4 cm3 FOV in the heart, relative to body and spine arrays. ICMRI with MBaluns met ASTM/IEC heating limits during navigation. Tip-deflection allowed navigating ICMRI and EP catheter into atria and ventricles. Acute-lesion long-inversion-time-T1-weighted 3D-imaging (TWILITE) ablation-monitoring using ICMRI required 5:30 min, half the time needed with surface arrays alone. CONCLUSION: ICMRI assisted EP-catheter navigation to difficult targets and accelerated RFA monitoring.
Assuntos
Ablação por Cateter , Imageamento por Ressonância Magnética , Animais , Arritmias Cardíacas , Ablação por Cateter/métodos , Desenho de Equipamento , Átrios do Coração , Imageamento por Ressonância Magnética/métodos , SuínosRESUMO
PURPOSE: Contouring clinical target volume (CTV) from medical images is an essential step for radiotherapy (RT) planning. Magnetic resonance imaging (MRI) is used as a standard imaging modality for CTV segmentation in cervical cancer due to its superior soft-tissue contrast. However, the delineation of CTV is challenging as CTV contains microscopic extensions that are not clearly visible even in MR images, resulting in significant contour variability among radiation oncologists depending on their knowledge and experience. In this study, we propose a fully automated deep learning-based method to segment CTV from MR images. METHODS: Our method begins with the bladder segmentation, from which the CTV position is estimated in the axial view. The superior-inferior CTV span is then detected using an Attention U-Net. A CTV-specific region of interest (ROI) is determined, and three-dimensional (3-D) blocks are extracted from the ROI volume. Finally, a CTV segmentation map is computed using a 3-D U-Net from the extracted 3-D blocks. RESULTS: We developed and evaluated our method using 213 MRI scans obtained from 125 patients (183 for training, 30 for test). Our method achieved (mean ± SD) Dice similarity coefficient of 0.85 ± 0.03 and the 95th percentile Hausdorff distance of 3.70 ± 0.35 mm on test cases, outperforming other state-of-the-art methods significantly (p-value < 0.05). Our method also produces an uncertainty map along with the CTV segmentation by employing the Monte Carlo dropout technique to draw physician's attention to the regions with high uncertainty, where careful review and manual correction may be needed. CONCLUSIONS: Experimental results show that the developed method is accurate, fast, and reproducible for contouring CTV from MRI, demonstrating its potential to assist radiation oncologists in alleviating the burden of tedious contouring for RT planning in cervical cancer.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Neoplasias do Colo do Útero , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapiaRESUMO
Brachytherapy is a radiation based treatment that is implemented by precisely placing focused radiation sources into tumors. In advanced interstitial cervical cancer bracytherapy treatment, this is performed by placing a metallic rod ("stylet") inside a hollow cylindrical tube ("catheter") and advancing the pair to the desired target. The stylet is removed once the target is reached, followed by the insertion of radiation sources into the catheter. However, manually advancing an initially straight stylet into the tumor with millimeter spatial accuracy has been a long-standing challenge, which requires multiple insertions and retractions, due to the unforeseen stylet deflection caused by the stiff muscle tissue that is traversed. In this paper, we develop a novel tendon-actuated deflectable stylet equipped with MR active-tracking coils that may enhance brachytherapy treatment outcomes by allowing accurate stylet trajectory control. Herein we present the design concept and fabrication method, followed by the kinematic and mechanics models of the deflectable stylet. The hardware and theoretical models are extensively validated via benchtop and MRI-guided characterization. At insertion depths of 60 mm, benchtop phantom targeting tests provided a targeting error of 1. 23 ± 0. 47 mm, and porcine tissue targeting tests provided a targeting error of 1. 65 ± 0. 64 mm, after only a single insertion. MR-guided experiments indicate that the stylet can be safely and accurately located within the MRI environment.
RESUMO
PURPOSE: To evaluate non-contrast-enhanced MRI of acute radio-frequency ablation (RFA) lesions in the left atrium (LA) and pulmonary vein (PV) ostia. The goal is to provide a method for discrimination between necrotic (permanent) lesions and reversible injury, which is associated with recurrence after treatment of atrial fibrillation. METHODS: Fifteen normal swine underwent RFA around the right-superior PV ostia. Electrical pulmonary vein isolation (PVI) was verified by electro-anatomic mapping (EAM) and pacing. MRI was carried out using a 3D respiratory-gated T1 -weighted long inversion time (TWILITE) sequence without contrast agent. Key settings were: inversion time 700 ms, triggering over 2 cardiac cycles, pixel size 1.1 mm3 . Contrast-enhanced imaging and T2 -weighted imaging were carried out for comparison. Six animals were sacrificed on ablation day for TTC-stained gross pathology, 9 animals were sacrificed after 2-3 mo after repeat EAM and MRI. Image intensity ratio (IIR) was used to measure lesion enhancement, and gross pathology was used to validate image enhancement patterns and compare lesion widths. RESULTS: RFA lesions exhibited unambiguous enhancement in acute TWILITE imaging (IIR = 2.34 ± 0.49 at 1.5T), and the enhancement patterns corresponded well with gross pathology. Lesion widths in MRI correlated well with gross pathology (R2 = 0.84), with slight underestimation by 0.9 ± 0.5 mm. Lesion enhancement subsided chronically. CONCLUSION: TWILITE imaging allowed acute detection of permanent RFA lesions in swine LA and PV ostia, without the need for contrast agent. Lesion enhancement pattern showed good correspondence to gross pathology and was well visualized by volume rendering. This method may provide valuable intra- or post-procedural assessment of RFA treatment.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Ablação por Radiofrequência , Animais , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Imageamento por Ressonância Magnética , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia , SuínosRESUMO
OBJECTIVE: The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). METHODS: 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. RESULTS: Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. CONCLUSION: In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates.
Assuntos
Braquiterapia/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Relação Dose-Resposta à Radiação , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Resultado do Tratamento , Neoplasias do Colo do Útero/patologiaRESUMO
PURPOSE: To restore 12-lead electrocardiographic (ECG) signal fidelity inside MRI by removing magnetic field gradient-induced voltages during high gradient duty cycle sequences. THEORY AND METHODS: A theoretical equation was derived to provide first- and second-order electrical fields induced at individual ECG electrodes as a function of gradient fields. Experiments were performed at 3T on healthy volunteers using a customized acquisition system that captured the full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived via linear regression of data from accelerated sequences and were used to compute induced voltages in real-time during full resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. RESULTS: Measured induced voltages were 0.7 V peak-to-peak during balanced steady state free precession (bSSFP) with the heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo, and multislice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes further from the magnet isocenter. Equation coefficients are evaluated with high repeatability (ρ = 0.996) and are dependent on subject, sequence, and slice orientation. CONCLUSION: Close agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence periods in which large induced voltages occur may allow hardware removal of these signals.
Assuntos
Eletrocardiografia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Artefatos , Técnicas de Imagem de Sincronização Cardíaca , Eletrodos , Voluntários Saudáveis , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Reprodutibilidade dos TestesRESUMO
Active magnetic resonance (MR) tracking for gynecologic brachytherapy was made possible by attaching the micro radiofrequency coils to the brachytherapy applicator. The rectangular planar micro coil was fabricated using flexible printed circuits with dimensions of 8mm×1.5mm. A 5-Fr (1.6mm) tungsten brachytherapy stylet was custom-machined to incorporate the micro coils. The finite element analysis and the phantom tissue studies show that the proposed device enables in situ, real-time guidance of access routes to the target anatomy safely and accurately. The setup was tested in a Siemens 3T MR scanner. The micro coils can be localized rapidly (up to 40 Hz) and precisely (resolution: 0.6×0.6×0.6mm3) using an MR-tracking sequence.
RESUMO
PURPOSE: To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. METHODS: An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending â¼5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. The 3 Tesla MRI catheter-insertion procedures were tested in phantoms and ex vivo animal tissue, and then performed in three patients during interstitial brachytherapy. RESULTS: The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm(3) ) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. CONCLUSION: This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy.
Assuntos
Artefatos , Braquiterapia/instrumentação , Braquiterapia/métodos , Marcadores Fiduciais , Neoplasias dos Genitais Femininos/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Metais , Radioterapia Assistida por Computador/instrumentação , Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , Animais , Galinhas , Gráficos por Computador , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Feminino , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Imagens de Fantasmas , SoftwareRESUMO
PURPOSE: To develop a technique that accurately detects the QRS complex in 1.5 Tesla (T), 3T, and 7T MRI scanners. METHODS: During early systole, blood is rapidly ejected into the aortic arch, traveling perpendicular to the MRI's main field, which produces a strong voltage (V(MHD)) that eclipses the QRS complex. Greater complexity arises in arrhythmia patients, since V(MHD) varies between sinus-rhythm and arrhythmic beats. The 3DQRS method uses a kernel consisting of 6 electrocardiogram (ECG) precordial leads (V1-V6), compiled from a 12-lead ECG performed outside the magnet. The kernel is cross-correlated with signals acquired inside the MRI to identify the QRS complex in real time. The 3DQRS method was evaluated against a vectorcardiogram (VCG)-based approach in two premature ventricular contraction (PVC) and two atrial fibrillation (AF) patients, a healthy exercising athlete, and eight healthy volunteers, within 1.5T and 3T MRIs, using a prototype MRI-conditional 12-lead ECG system. Two volunteers were recorded at 7T using a Holter recorder. RESULTS: For QRS complex detection, 3DQRS subject-averaged sensitivity levels, relative to VCG were: 1.5T (100% versus 96.7%), 3T (98.9% versus 92.2%), and 7T (96.2% versus 77.7%). CONCLUSION: The 3DQRS method was shown to be more effective in cardiac gating than a conventional VCG-based method.
Assuntos
Algoritmos , Artefatos , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Computador/métodos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: High-fidelity 12-lead electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MRI. Issues in obtaining noncorrupted ECGs inside MRI include a superimposed magneto-hydro-dynamic voltage, gradient switching-induced voltages, and radiofrequency heating. These problems increase with magnetic field. The aim of this study is to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. METHODS: The system was constructed with transmission lines to reduce radiofrequency induction and switching circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove the magneto-hydro-dynamic voltage. The system was tested on 10 (one exercising) volunteers and four arrhythmia patients. RESULTS: Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). Magneto-hydro-dynamic voltage removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true S-wave to T-wave segment. In premature ventricular contraction (PVC) patients, clean ECGs separated premature ventricular contraction and sinus rhythm beats. Measured heating was <1.5°C. The system reliably acquired multiphase (steady-state free precession) wall-motion-cine and phase-contrast-cine scans, including subjects in whom 4-lead gating failed. The system required a minimum repetition time of 4 ms to allow robust ECG processing. CONCLUSION: High-fidelity intra-MRI 12-lead ECG is possible.
Assuntos
Fibrilação Atrial/cirurgia , Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Eletrocardiografia/instrumentação , Imagem por Ressonância Magnética Intervencionista/instrumentação , Cirurgia Assistida por Computador/instrumentação , Idoso , Animais , Fibrilação Atrial/diagnóstico , Procedimentos Cirúrgicos Cardiovasculares/instrumentação , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Resultado do TratamentoRESUMO
PURPOSE: Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. METHODS: An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. RESULTS: Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. CONCLUSION: An MRI-compatible VDT system is feasible.
Assuntos
Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Pletismografia de Impedância/instrumentação , Próteses e Implantes , Tecnologia sem Fio/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Projetos Piloto , SuínosRESUMO
AIMS: Prior work has demonstrated that magnetic resonance imaging (MRI) strain can separate necrotic/stunned myocardium from healthy myocardium in the left ventricle (LV). We surmised that high-resolution MRI strain, using navigator-echo-triggered DENSE, could differentiate radiofrequency ablated tissue around the pulmonary vein (PV) from tissue that had not been damaged by radiofrequency energy, similarly to navigated 3D myocardial delayed enhancement (3D-MDE). METHODS AND RESULTS: A respiratory-navigated 2D-DENSE sequence was developed, providing strain encoding in two spatial directions with 1.2 × 1.0 × 4 mm(3) resolution. It was tested in the LV of infarcted sheep. In four swine, incomplete circumferential lesions were created around the right superior pulmonary vein (RSPV) using ablation catheters, recorded with electro-anatomic mapping, and imaged 1 h later using atrial-diastolic DENSE and 3D-MDE at the left atrium/RSPV junction. DENSE detected ablation gaps (regions with >12% strain) in similar positions to 3D-MDE (2D cross-correlation 0.89 ± 0.05). Low-strain (<8%) areas were, on average, 33% larger than equivalent MDE regions, so they include both injured and necrotic regions. Optimal DENSE orientation was perpendicular to the PV trunk, with high shear strain in adjacent viable tissue appearing as a sensitive marker of ablation lesions. CONCLUSIONS: Magnetic resonance imaging strain may be a non-contrast alternative to 3D-MDE in intra-procedural monitoring of atrial ablation lesions.
Assuntos
Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Átrios do Coração/cirurgia , Infarto do Miocárdio/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Átrios do Coração/patologia , Infarto do Miocárdio/patologia , Ovinos , SuínosRESUMO
Background: In the US, 1.4 million people have implanted ICDs for reducing the risk of sudden death due to ventricular arrhythmias. Cardiac MRI (cMR) is of particular interest in the ICD patient population as cMR is the optimal imaging modality for distinguishing cardiac conditions that predispose to sudden death, and it is the best method to plan and guide therapy. However, all ICDs contain a ferromagnetic transformer which imposes a large inhomogeneous magnetic field in sections of the heart, creating large image voids that can mask important pathology. A shim system was devised to resolve these ICD issues. A shim coil system (CSS) that corrects ICD artifacts over a user-selected Region-of-Interest (ROI), was constructed and validated. Methods: A shim coil was constructed that can project a large magnetic field for distances of ~15 cm. The shim-coil can be positioned safely anywhere within the scanner bore. The CSS includes a cantilevered beam to hold the shim coil. Remotely controlled MR-conditional motors allow 2 mm-accuracy three-dimensional shim-coil position. The shim coil is located above the subjects and the imaging surface-coils. Interaction of the shim coil with the scanner's gradients was eliminated with an amplifier that is in a constant current mode. Coupling with the scanners' radio-frequency (rf) coils, was reduced with shielding, low-pass filters, and cable shield traps. Software, which utilizes magnetic field (B0) mapping of the ICD inhomogeneity, computes the optimal location for the shim coil and its corrective current. ECG gated single- and multiple-cardiac-phase 2D GRE and SSFP sequences, as well as 3D ECG-gated respiratory-navigated IR-GRE (LGE) sequences were tested in phantoms and N = 3 swine with overlaid ICDs. Results: With all cMR sequences, the system reduced artifacts from >100 ppm to <25 ppm inhomogeneity, which permitted imaging of the entire left ventricle in swine with ICD-related voids. Continuously acquired Gradient recalled echo or Steady State Free Precession images were used to interactively adjust the shim current and coil location. Conclusion: The shim system reduced large field inhomogeneities due to implanted ICDs and corrected most ICD-related image distortions. Externally-controlled motorized translation of the shim coil simplified its utilization, supporting an efficient cardiac MRI workflow.
RESUMO
OBJECTIVE: Implanted Cardioverter Defibrillators (ICDs) induce a large (100 parts per million) inhomogeneous magnetic field in the magnetic resonance imaging (MRI) scanner which cannot be corrected by the scanner's built-in shim coils, leading to significant image artifacts that can make portions of the heart unreadable. To compensate for the field inhomogeneity, an active shim coil capable of countering the field deviation in user-defined regions was designed that must be optimally placed at patient-specific locations. We aim to develop and evaluate an MR-safe robotic solution for automated shim coil positioning. METHODS: We designed and fabricated an MR-safe Cartesian platform that holds the shim coil inside the scanner. The platform consists of three lead screw stages actuated by pneumatic motors, achieving decoupled translations of 140 mm in each direction. The platform is made of plastics and fiberglass with the control electronics placed outside the scanner room, ensuring MR safety. Mechanical modeling was derived to provide design specifications. RESULTS: Experiments show that the platform achieves less than 2 mm average motion error and 0.5 mm repeatability in all directions, and reduces the adjustment time from 5 min to a few seconds. Phantom and animal trials were conducted, showing that the proposed system is able to position a heavy shim coil ( kg) for improved ICD artifact suppression. CONCLUSION: This robotic platform provides an effective method for reliable shim coil positioning inside the scanner. SIGNIFICANCE: This work contributes to improving cardiac MRI quality that could facilitate accurate diagnosis and treatment planning for patients with implanted ICDs.
Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Humanos , Coração/diagnóstico por imagem , Robótica/instrumentação , Desfibriladores Implantáveis , Artefatos , Reprodutibilidade dos TestesRESUMO
Objective. MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI.Approach. In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis.Main results. DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min.Significance. These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available athttps://github.com/JHU-MICA/DCT-UNet.
Assuntos
Braquiterapia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Órgãos em Risco , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Órgãos em Risco/diagnóstico por imagem , Feminino , Braquiterapia/métodos , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado Profundo , Radioterapia Guiada por Imagem/métodosRESUMO
PURPOSE: To evaluate the relationship between delivered radiation (RT) and post-RT inversion-recovery ultrashort-echo-time (IR-UTE) MRI signal-intensity (SI) in gynecologic cancer patients treated with high-dose-rate (HDR) brachytherapy (BT). METHODS: Seven patients underwent whole-pelvis RT (WPRT) followed by BT to the high-risk clinical target volume (HR-CTV). MR images were acquired at three time-points; pre-RT, post-WPRT/pre-BT, and 3-6 months post-BT. Diffuse-fibrosis (FDiffuse) was imaged with a non-contrast dual-echo IR (inversion time [TI] = 60 ms) UTE research application, with image-subtraction of the later echo, only retaining the ultrashort-echo SI. Dense-fibrosis (FDense) imaging utilized single-echo Late-Gadolinium-Enhanced IR-UTE, acquired â¼ 15 min post-Gadavist injection. Resulting FDiffuse and FDense SI were normalized to the corresponding gluteal-muscle SI. Images were deformably registered between time-points based on normal tissue anatomy. The remnant tumor at both time-points was segmented using multi-parametric MRI. Contours corresponding to the 50%, 100%, 150%, and 200% isodose lines (IDLs) of the prescription BT-dose were created. Mean FDiffuse and FDense SI within (i) each IDL contour and (ii) the remnant tumor were calculated. Post-BT FDiffuse and FDense SI were correlated with prescribed BT-dose. To determine the relationship between BT-dose and IR-UTE SI, the differences in the post-BT FDense across IDLs was determined using paired t-tests with Bonferroni correction. RESULTS: FDense was higher in regions of higher dose for 6/7 patients, with mean ± SD values of 357 ± 103% and 331 ± 97% (p = .03) in the 100% and 50% IDL, respectively. FDense was higher in regions of higher dose in the responsive regions with mean ± SD values of 380 ± 122% and 356 ± 135% (p = .03) in the 150% and 50% IDL, respectively. Within the segmented remnant tumor, an increase in prescribed dose correlated with an increase in FDense post-BT (n = 5, r = .89, p = .04). Post-BT FDiffuse inversely correlated (n = 7, r = -.83, p = .02) with prescribed BT-dose within the 100% IDL. CONCLUSIONS: Results suggest that FDense SI 3-6 months post-BT is a sensitive measure of tissue response to heterogeneous BT radiation-dose. Future studies will validate whether FDiffuse and FDense are accurate biomarkers of fibrotic radiation response.
Assuntos
Braquiterapia , Neoplasias dos Genitais Femininos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Humanos , Feminino , Braquiterapia/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias dos Genitais Femininos/radioterapia , Neoplasias dos Genitais Femininos/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
Intracavity imaging coils provide higher signal-to-noise than surface coils and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically induced motion artifacts, as both the anatomy and the coils move during image acquisition. We developed prospective motion-correction techniques for intracavity imaging using an array of tracking coils. The system had <50 ms latency between tracking and imaging, so that the images from the intracavity coil were acquired in a frame of reference defined by the tracking array rather than by the system's gradient coils. Two-dimensional gradient-recalled and three-dimensional electrocardiogram-gated inversion-recovery-fast-gradient-echo sequences were tested with prospective motion correction using ex vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7 ± 0.5 mm, 0.6 ± 0.4 mm, and 0.1 ± 0.1 mm along the X, Y, and Z directions at a rate of 20 frames-per-second. The ex vivo and human experiments showed significant image quality improvements for both in-plane and through-plane motion correction, which although not performed in intracavity imaging, demonstrates the feasibility of implementing such a motion-correction system in a future design of combined tracking and intracavity coil.
Assuntos
Artefatos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Wideband steady-state free precession (WB-SSFP) is a modification of balanced steady-state free precession utilizing alternating repetition times to reduce susceptibility-induced balanced steady-state free precession limitations, allowing its use for high-resolution myelographic-contrast spinal imaging. Intertissue contrast and spatial resolution of complete-spine-coverage 3D WB-SSFP were compared with those of 2D T2-weighted fast spin echo, currently the standard for spine T2-imaging. Six normal subjects were imaged at 1.5 and 3 T. The signal-to-noise ratio efficiency (SNR per unit-time and unit-volume) of several tissues was measured, along with four intertissue contrast-to-noise ratios; nerve-ganglia:fat, intradural-nerves:cerebrospinal fluid, nerve-ganglia:muscle, and muscle:fat. Patients with degenerative and traumatic spine disorders were imaged at both MRI fields to demonstrate WB-SSFP clinical advantages and disadvantages. At 3 T, WB-SSFP provided spinal contrast-to-noise ratios 3.7-5.2 times that of fast spin echo. At 1.5 T, WB-SSFP contrast-to-noise ratio was 3-3.5 times that of fast spin echo, excluding a 1.7 ratio for intradural-nerves:cerebrospinal fluid. WB-SSFP signal-to-noise ratio efficiency was also higher. Three-dimensional WB-SSFP disadvantages relative to 2D fast spin echo are reduced edema hyperintensity, reduced muscle signal, and higher motion sensitivity. WB-SSFP's high resolution and contrast-to-noise ratio improved visualization of intradural nerve bundles, foraminal nerve roots, and extradural nerve bundles, improving detection of nerve compression in radiculopathy and spinal-stenosis. WB-SSFP's high resolution permitted reformatting into orthogonal planes, providing distinct advantages in gauging fine spine pathology.
Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Doenças da Medula Espinal/patologia , Doenças da Coluna Vertebral/patologia , Idoso , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de SpinRESUMO
PURPOSE: To assess the efficacy and robustness of motion sensitized driven equilibrium (MSDE) for blood suppression in volumetric 3D whole-heart cardiac MR. MATERIALS AND METHODS: To investigate the efficacy of MSDE on blood suppression and myocardial signal-to-noise ratio (SNR) loss on different imaging sequences, seven healthy adult subjects were imaged using 3D electrocardiogram (ECG)-triggered MSDE-prep T(1) -weighted turbo spin echo (TSE), and spoiled gradient echo (GRE), after optimization of MSDE parameters in a pilot study of five subjects. Imaging artifacts, myocardial and blood SNR were assessed. Subsequently, the feasibility of isotropic spatial resolution MSDE-prep black-blood was assessed in six subjects. Finally, 15 patients with known or suspected cardiovascular disease were recruited to be imaged using a conventional multislice 2D double inversion recovery (DIR) TSE imaging sequence and a 3D MSDE-prep spoiled GRE. RESULTS: The MSDE-prep yielded significant blood suppression (75%-92%), enabling a volumetric 3D black-blood assessment of the whole heart with significantly improved visualization of the chamber walls. The MSDE-prep also allowed successful acquisition of black-blood images with isotropic spatial resolution. In the patient study, 3D black-blood MSDE-prep and DIR resulted in similar blood suppression in left ventricle and right ventricle walls but the MSDE-prep had superior myocardial signal and wall sharpness. CONCLUSION: MSDE-prep allows volumetric black-blood imaging of the heart.