Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(4): 557-584, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35188651

RESUMO

Time-resolved infrared (IR) spectroscopy is a widely used technique in the investigation of photoinduced reactions, given its capabilities of providing structural information about the presence of intermediates and the reaction mechanism. Despite the fact that it is used in several fields since the '80s, the communication between the different scientific communities (photochemists, photobiologists, etc.) has been to date quite limited. In some cases, this lack of communication happened-and still happens-even inside the same scientific community (for instance between specialists in ultrafast ps/fs IR and those in "fast" ns/µs/ms IR). Even more surprising is the difficulty of non-specialists to understand the potential of time-resolved IR spectroscopy, despite the fact that IR spectroscopy is normally taught to all chemistry and material science students, and to several biology and physics students. This tutorial review aims at helping to solve these issues, first by providing a comprehensive but reader-friendly overview of the different techniques, and second, by focusing on five "case studies" (from photobiology, gas-phase photocatalysis, photochemistry, semiconductors and metal-carbonyl complexes). We are confident that this approach can help the reader-whichever is its background-to understand the capabilities of time-resolved IR spectroscopy to study the mechanism of photoinduced reactions.


Assuntos
Complexos de Coordenação , Semicondutores , Humanos , Fotobiologia , Fotoquímica , Espectrofotometria Infravermelho
2.
Anal Chem ; 91(7): 4368-4373, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807100

RESUMO

For the first time, a standard rapid-scan Fourier-transform infrared (FT-IR) spectrometer was coupled with quantum cascade lasers (QCLs) tunable within the 1876-905 cm-1 spectral range, within one single setup, by keeping one single sample compartment. The aim was to extend the time resolution of absorption measurements by several orders of magnitude thanks to the fast pulsed QCL technology without losing the spectral information provided by standard FT-IR spectroscopy, both probing the same sample. By slightly modifying the optical bench arrangement, the spectrometer now enables a fast and easy switch between the standard FT-IR mode, used for classical broadband scans from 6000 to 650 cm-1, and the new QCL-irradiation mode, used for ultrafast recording at specific wavenumbers (the two diagnostics have superimposed beam paths). So, one can study a sample (in condensed or gaseous state) during a physical or chemical transformation first as a whole in a broadband configuration and then immediately switch to the QCL mode to monitor a selected absorption feature (associated with an intermediate, a structural change, a diffusing substance, etc., for example) versus time. The QCL mode then drastically boosts the time resolution from tens of milliseconds (in rapid-scan FT-IR) to a few microseconds, as demonstrated here in the case of ammonia diffusion into a commercial zeolite ZSM-5.

3.
Chemistry ; 25(27): 6753-6762, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875140

RESUMO

Solid acid catalysts are central in our chemical industry and are major players in the valorization of bioresources. However, there is still a need to develop solid acid catalysts with enhanced acid strength and improved, or tunable, physicochemical profile to enhance the efficiency and sustainability of chemical processes. Here, a modular approach to tune the acid strength and surface polarity of silica-supported sulfonic acid catalysts, based on a versatile copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based anchoring scheme, is presented. The CuAAC-formed triazole link was used to enhance the activity of the grafted sulfonic acids and to pair the acid sites with secondary hydrophobic functions. The beneficial effects of both the triazolium link and the paired hydrophobic site, as well as the optimal positioning of the sulfonic moiety on the triazole ring, are discussed in model esterification reactions.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 151-159, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27632798

RESUMO

Characterizing catalysts under working conditions is crucial to understand and to optimize their behavior and performance. However, when Raman spectroscopy is used, attention has to be paid to laser-induced artefacts. While laser irradiation is often claimed to lead to a temperature gradient between the integral catalyst bed and the sampling point, neither the circumstances when such effect appears, nor if it systematically occurs or not, are really explored in details. The present paper shows that the sensitivity of a catalyst to laser-induced heating largely depends on the gas composition under which the analysis is done, in particular that it depends whether the catalyst has adsorbed reactant molecules or not. These aspects are here addressed via the Raman in situ exploration of H3PW12O40. This heteropolyacid is a widely used acid catalyst due to its very high Brönsted acidity, approaching the superacid region. In particular, we have investigated the impact of laser irradiation in the Raman monitoring of solid H3PW12O40 at work under a flow of methanol in nitrogen at 50°C. When 1 single spectrum of H3PW12O40 was measured after 3h of exposure to methanol, the characteristic CH vibration bands of adsorbed methanol appeared. However, when spectra were measured continuously throughout the experiment, the same CH vibration bands were observed only during the first hour, then they disappeared and the characteristic bands of polyaromatic molecules appeared. Under continuous laser irradiation, adsorbed methanol was thus converted into polyaromatic coke as resulting from a laser-induced heating. However, the spectra collected under pure nitrogen show that the laser does not heat the catalyst in the absence of methanol. UV-Vis revealed the reason of the laser-induced heating in the presence of methanol, and the subsequent formation of coke. Actually the catalyst gets reduced by the adsorbed methanol, what darkens the catalyst bed. Such a darkening renders the catalyst sensitive to laser-induced heating, which in turn leads to the formation of coke. Under continuous laser irradiation, methanol thus auto-initiated its own catalytic conversion, finally leading to the deposition of coke. Such artefact must be avoided if one wants to study the true behavior of the catalyst at work. This paper shows that, for reducible samples analyzed in the presence of reductive molecules, this is only possible by shining the laser intermittently and not continuously. More generally, it actually shows that the adequate way to irradiate a catalyst (continuous vs intermittent) in an in situ/operando Raman analysis depends on the gas flow composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA