Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(30): 15106-15115, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31270239

RESUMO

Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of Polypterus and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and Polypterus reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that Polypterus and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.


Assuntos
Ambystoma mexicanum/genética , Evolução Biológica , Ciclídeos/genética , Cyprinidae/genética , Proteínas de Peixes/genética , Peixes/genética , Regeneração/genética , Ambystoma mexicanum/classificação , Nadadeiras de Animais/fisiologia , Animais , Ciclídeos/classificação , Cyprinidae/classificação , Extremidades/fisiologia , Proteínas de Peixes/classificação , Peixes/classificação , Ontologia Genética , Anotação de Sequência Molecular , Filogenia , Transcriptoma
2.
Evol Dev ; 22(4): 297-311, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32163674

RESUMO

Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema-a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration.


Assuntos
Ambystoma mexicanum/fisiologia , Nadadeiras de Animais/fisiologia , Extremidades/fisiologia , Peixes/fisiologia , Regeneração , Fator de von Willebrand/metabolismo , Animais , Evolução Biológica , Fator D do Complemento/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Evolução Molecular , Feminino , Masculino , Regeneração/genética
3.
Proc Biol Sci ; 287(1935): 20192939, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933441

RESUMO

Salamanders, frog tadpoles and diverse lizards have the remarkable ability to regenerate tails. Palaeontological data suggest that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here, we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens, a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via the formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast with lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic programme deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signalling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that the developmental processes and genetic programme of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.


Assuntos
Peixes/fisiologia , Cauda/fisiologia , Animais , Extremidades/fisiologia , Filogenia , Regeneração/fisiologia
4.
Dev Biol ; 434(1): 63-73, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180104

RESUMO

Wnt proteins regulate diverse biological responses by initiating two general outcomes: ß-catenin-dependent transcription and ß-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the ß-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in ß-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/ß-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in ß-catenin signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas de Transporte/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Nature ; 496(7445): 311-6, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598338

RESUMO

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Assuntos
Evolução Biológica , Peixes/classificação , Peixes/genética , Genoma/genética , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Peixes/anatomia & histologia , Peixes/fisiologia , Genes Homeobox/genética , Genômica , Imunoglobulina M/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Vertebrados/anatomia & histologia , Vertebrados/genética , Vertebrados/fisiologia
6.
Genesis ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28834157

RESUMO

Limbs with digits evolved as sarcopterygian fish transitioned to a terrestrial life, giving rise to modern tetrapods. Since the Devonian, most of the sarcopterygian fish diversity became extinct, with the only surviving representatives being two coelacanth and six lungfish species. As the sister group of tetrapods, sarcopterygian fish constitute the ideal models to address questions regarding the transition of vertebrates from water to land. However, distantly related yet experimentally amenable teleost fish species have instead become the organisms of choice for geneticists and developmental biologists. Comparative studies using teleosts, such as zebrafish, have greatly enriched our knowledge on the genetic and regulatory mechanisms underlying fin development. However, their highly derived fin anatomy provides limited insights on the origin of limbs and the teleost-specific whole-genome duplication represents a further complication to comparisons of gene function and regulation. In recent years, refined morphological and behavioral studies and access to lungfish embryos and availability of genetic resources have underscored the value of nontetrapod sarcopterygians as model organisms. Here we review recent studies using lungfishes and coelacanths that shed light on various aspects of the evolution of the tetrapod limb, including the origin of the tetrapod pelvis, limb musculature, digits, locomotion, and regenerative capacity.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Extremidades , Animais , Peixes
7.
J Exp Zool B Mol Dev Evol ; 330(3): 138-147, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602205

RESUMO

Limb development in salamanders is unique among tetrapods in significant ways. Not only can salamanders regenerate lost limbs repeatedly and throughout their lives, but also the preaxial zeugopodial element and digits form before the postaxial ones and, hence, with a reversed polarity compared to all other tetrapods. Moreover, in salamanders with free-swimming larval stages, as exemplified by the axolotl (Ambystoma mexicanum), each digit buds independently, instead of undergoing a paddle stage. Here, we report gene expression patterns of Hoxa and d clusters, and other crucial transcription factors during axolotl limb development. During early phases of limb development, expression patterns are mostly similar to those reported for amniotes and frogs. Likewise, Hoxd and Shh regulatory landscapes are largely conserved. However, during late digit-budding phases, remarkable differences are present: (i) the Hoxd13 expression domain excludes developing digits I and IV, (ii) we expand upon previous observation that Hoxa11 expression, which traditionally marks the zeugopodium, extends distally into the developing digits, and (iii) Gli3 and Etv4 show prolonged expression in developing digits. Our findings identify derived patterns in the expression of key transcription factors during late phases of salamander limb development, and provide the basis for a better understanding of the unique patterning of salamander limbs.


Assuntos
Padronização Corporal/genética , Extremidades/crescimento & desenvolvimento , Genes Homeobox/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Urodelos/crescimento & desenvolvimento , Proteína Gli3 com Dedos de Zinco/fisiologia , Animais , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Larva/crescimento & desenvolvimento , Filogenia , Proteína Gli3 com Dedos de Zinco/genética
8.
Proc Natl Acad Sci U S A ; 112(52): 15940-5, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644578

RESUMO

Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies.


Assuntos
Adaptação Fisiológica/genética , Nadadeiras de Animais/metabolismo , Proteínas de Peixes/genética , Rajidae/genética , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/classificação , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Peixes/classificação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Hibridização In Situ , Filogenia , Rajidae/embriologia
9.
Proc Natl Acad Sci U S A ; 112(16): 4871-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25901307

RESUMO

The fossil record is a unique repository of information on major morphological transitions. Increasingly, developmental, embryological, and functional genomic approaches have also conspired to reveal evolutionary trajectory of phenotypic shifts. Here, we use the vertebrate appendage to demonstrate how these disciplines can mutually reinforce each other to facilitate the generation and testing of hypotheses of morphological evolution. We discuss classical theories on the origins of paired fins, recent data on regulatory modulations of fish fins and tetrapod limbs, and case studies exploring the mechanisms of digit loss in tetrapods. We envision an era of research in which the deep history of morphological evolution can be revealed by integrating fossils of transitional forms with direct experimentation in the laboratory via genome manipulation, thereby shedding light on the relationship between genes, developmental processes, and the evolving phenotype.


Assuntos
Desenvolvimento Embrionário , Genômica , Organogênese/genética , Paleontologia , Nadadeiras de Animais/embriologia , Animais , Evolução Biológica , Epigênese Genética , Extremidades/embriologia , Fenótipo , Fatores de Tempo , Vertebrados/embriologia
10.
Proc Natl Acad Sci U S A ; 112(3): 803-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25535365

RESUMO

There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.


Assuntos
Peixes/anatomia & histologia , Animais , Elementos Facilitadores Genéticos , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Camundongos
11.
J Exp Zool B Mol Dev Evol ; 328(1-2): 97-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27862964

RESUMO

The pelvic fins of male South American lungfish, Lepidosiren paradoxa, are adorned with a distinctive array of filaments, which grow and become highly vascularized during the breeding season. The resemblance between these pelvic fin filaments (PFFs) and external gills of other vertebrates suggested that this gill-like structure was used for physiological gas exchange. It has been proposed that the unique pelvic fin of male L. paradoxa is used for release of oxygen from its blood into the environment in order to aerate its nesting brood, or, conversely, as an auxiliary respiratory organ by absorbing oxygen from the environment into its bloodstream. Here, we employed histology, scanning electron microscopy (SEM) and quantitative PCR (qPCR) to assess whether the morphology and molecular profile of PFFs are compatible with a role in gas exchange. First, we closely examined its external morphology and showed that PFFs develop from short papillae during the rainy season, but remain covered by a thick nonvascularized epithelium. Histological examination confirmed that capillaries within the filaments are separated from the exterior by a basement membrane and a stratified epithelium composed of four to five cell layers. In addition, SEM analysis revealed significant differences between the fin filament epithelium and typical gill epithelium. Finally, our qPCR results showed that five genes commonly expressed in gills were downregulated in PFFs relative to their expression in regular pectoral fin epidermis. Collectively, our results do not directly support a role for PFFs, commonly referred to as "limb gills", in oxygen release or uptake.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Animais , Epitélio/ultraestrutura , Brânquias/ultraestrutura , Masculino , Reprodução , Fatores Sexuais
12.
Trends Genet ; 29(7): 419-26, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23434323

RESUMO

More than three centuries ago natural philosophers, and later anatomists, recognized a fundamental organization to the skeleton of tetrapod limbs. Composed of three segments, stylopod, zeugopod, and autopod, this pattern has served as the basis for a remarkably broad adaptive radiation from wings and flippers to hands and digging organs. A central area of inquiry has been tracing the origins of the elements of this Bauplan in the fins of diverse fish. Can equivalents of the three segments, and the developmental processes that pattern them, be seen in fish fins? In addition, if so, how do these data inform theories of the transformation of fins into limbs? Answers to these questions come from linking discoveries in paleontology with those of developmental biology and genetics. Burgeoning discoveries in the regulatory biology of developmental genes and in the genomics of diverse species offer novel data to investigate these classical questions.


Assuntos
Evolução Biológica , Extremidades/fisiologia , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Nadadeiras de Animais/fisiologia , Animais , Galinhas , Fósseis , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Paleontologia
15.
Proc Natl Acad Sci U S A ; 108(31): 12782-6, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21765002

RESUMO

The evolutionary transition of the fins of fish into tetrapod limbs involved genetic changes to developmental systems that resulted in novel skeletal patterns and functions. Approaches to understanding this issue have entailed the search for antecedents of limb structure in fossils, genes, and embryos. Comparative genetic analyses have produced ambiguous results: although studies of posterior Hox genes from homology group 13 (Hoxa-13 and Hoxd-13) reveal similarities in gene expression between the distal segments of fins and limbs, this functional homology has not been supported by genomic comparisons of the activity of their cis-regulatory elements, namely the Hoxd Global Control Region. Here, we show that cis-regulatory elements driving Hoxd gene expression in distal limbs are present in fish. Using an interspecies transgenesis approach, we find functional conservation between gnathostome Hoxd enhancers, demonstrating that orthologous sequences from tetrapods, zebrafish and skate can drive reporter gene expression in mouse limbs and zebrafish fins. Our results support the notion that some of the novelties associated with tetrapod limbs arose by modification of deeply conserved cis- and trans-acting mechanisms of Hox regulation in gnathostomes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico/genética , Vertebrados/genética , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Evolução Biológica , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Extremidades/anatomia & histologia , Extremidades/embriologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Filogenia , Proteínas de Ligação a Poli-ADP-Ribose , Rajidae/embriologia , Rajidae/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/classificação , Vertebrados/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
16.
Dev Biol ; 348(1): 22-33, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20858476

RESUMO

The establishment of the left-right (LR) axis in zebrafish embryos relies on signals from the dorsal forerunner cells (DFC) and the Kupffer's vesicle (KV). While the Wnt signaling network influences many aspects of embryonic development, its precise role in LR patterning is still unclear. One branch of the Wnt network leads to stabilization of ß-catenin and activation of downstream target genes. Other Wnt ligands appear to act independently of ß-catenin to modulate calcium release and influence cell polarity. Central to regulation of ß-catenin and coordination of convergent extension (CE) movements is Dishevelled (Dvl). Naked Cuticle (Nkd) binds Dvl and modulates ß-catenin-dependent and independent Wnt signaling. Here, we analyze the expression patterns of three zebrafish Nkd homologs and find enriched expression of nkd1 in DFCs and KV. Dvl is degraded upon Nkd1 overexpression in zebrafish. Knockdown of Nkd1 specifically in the DFC results in ß-catenin nuclear localization and transcriptional activation as well as alterations to DFC migration, KV formation, ciliogenesis and LR patterning. Furthermore, we identify asymmetric expression of the Nodal antagonist charon around the KV and show that Nkd1 knockdown impacts asymmetric charon expression. Our findings show that Nkd1 acts as a ß-catenin antagonist in the DFCs necessary for LR patterning.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Padronização Corporal/fisiologia , Proteínas de Transporte/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Peixe-Zebra/isolamento & purificação , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Transporte/genética , Movimento Celular/efeitos dos fármacos , Cílios/ultraestrutura , Proteínas Desgrenhadas , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Estabilidade Proteica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/fisiologia
17.
Curr Biol ; 31(10): R467-R469, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033765

RESUMO

Based on embryology and comparative genomics, recent studies reveal that genetic pathways and gene regulatory elements responsible for the invasion of land by tetrapod ancestors are deeply conserved in fish.


Assuntos
Peixes , Genômica , Animais , Peixes/genética , Fenótipo , Filogenia
19.
FEBS J ; 287(8): 1598-1611, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31610084

RESUMO

It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O2 binding properties and nitrite reductase enzymatic activities of recombinantly expressed P. annectens Mbs (PanMbs). CD spectroscopy and small-angle X-ray scattering revealed the typical globin-fold in all investigated recombinant Mbs, indicating a conserved structure. The highest O2 affinity was measured for PanMb2 (P50  = 0.88 Torr at 20 °C), which is mainly expressed in the brain, whereas the muscle-specific PanMb1 has the lowest O2 affinity (P50  = 3.78 Torr at 20 °C), suggesting that tissue-specific O2 requirements have resulted in the emergence of distinct Mb types. Two of the mainly neuronally expressed Mbs (PanMb3 and PanMb4b) have the highest nitrite reductase rates. These data show different O2 binding and enzymatic properties of lungfish Mbs, reflecting multiple subfunctionalisation and neofunctionalisation events that occurred early in the evolution of lungfish. Some Mbs may have also taken over the functions of neuroglobin and cytoglobin, which are widely expressed in vertebrates but appear to be missing in lungfish.


Assuntos
Peixes/genética , Mioglobina/genética , Mioglobina/metabolismo , Animais , Mioglobina/isolamento & purificação , Oxigênio/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
Sci Rep ; 9(1): 280, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670817

RESUMO

Globins are a classical model system for the studies of protein evolution and function. Recent studies have shown that - besides the well-known haemoglobin and myoglobin - additional globin-types occur in vertebrates that serve different functions. Globin E (GbE) was originally identified as an eye-specific protein of birds that is distantly related to myoglobin. GbE is also present in turtles and the coelacanth but appeared to have been lost in other vertebrates. Here, we show that GbE additionally occurs in lungfish, the closest living relatives of the tetrapods. Each lungfish species harbours multiple (≥5) GbE gene copies. Surprisingly, GbE is exclusively and highly expressed in oocytes, with mRNA levels that exceed that of myoglobin in the heart. Thus, GbE is the first known oocyte-specific globin in vertebrates. No GbE transcripts were found in the ovary or egg transcriptomes of other vertebrates, suggesting a lungfish-specific function. Spectroscopic analysis and kinetic studies of recombinant GbE1 of the South American lungfish Lepidosiren paradoxa revealed a typical pentacoordinate globin with myoglobin-like O2-binding kinetics, indicating similar functions. Our findings suggest that the multiple copies of GbE evolved to enhance O2-supply in the developing embryo of lungfish, analogous to the embryonic and fetal haemoglobins of other vertebrates. In evolution, GbE must have changed its expression site from oocytes to eyes, or vice versa.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Globinas/genética , Globinas/metabolismo , Oócitos/química , Oxigênio/metabolismo , Animais , Peixes , Mioglobina/metabolismo , RNA Mensageiro/metabolismo , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA