Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38199864

RESUMO

During communication in real-life settings, our brain often needs to integrate auditory and visual information and at the same time actively focus on the relevant sources of information, while ignoring interference from irrelevant events. The interaction between integration and attention processes remains poorly understood. Here, we use rapid invisible frequency tagging and magnetoencephalography to investigate how attention affects auditory and visual information processing and integration, during multimodal communication. We presented human participants (male and female) with videos of an actress uttering action verbs (auditory; tagged at 58 Hz) accompanied by two movie clips of hand gestures on both sides of fixation (attended stimulus tagged at 65 Hz; unattended stimulus tagged at 63 Hz). Integration difficulty was manipulated by a lower-order auditory factor (clear/degraded speech) and a higher-order visual semantic factor (matching/mismatching gesture). We observed an enhanced neural response to the attended visual information during degraded speech compared to clear speech. For the unattended information, the neural response to mismatching gestures was enhanced compared to matching gestures. Furthermore, signal power at the intermodulation frequencies of the frequency tags, indexing nonlinear signal interactions, was enhanced in the left frontotemporal and frontal regions. Focusing on the left inferior frontal gyrus, this enhancement was specific for the attended information, for those trials that benefitted from integration with a matching gesture. Together, our results suggest that attention modulates audiovisual processing and interaction, depending on the congruence and quality of the sensory input.


Assuntos
Encéfalo , Percepção da Fala , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Percepção Visual/fisiologia , Magnetoencefalografia , Fala/fisiologia , Atenção/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Estimulação Luminosa
2.
Proc Natl Acad Sci U S A ; 119(32): e2201968119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921434

RESUMO

Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide the interpretation of incoming input. However, the role of prediction in language processing remains disputed, with disagreement about both the ubiquity and representational nature of predictions. Here, we address both issues by analyzing brain recordings of participants listening to audiobooks, and using a deep neural network (GPT-2) to precisely quantify contextual predictions. First, we establish that brain responses to words are modulated by ubiquitous predictions. Next, we disentangle model-based predictions into distinct dimensions, revealing dissociable neural signatures of predictions about syntactic category (parts of speech), phonemes, and semantics. Finally, we show that high-level (word) predictions inform low-level (phoneme) predictions, supporting hierarchical predictive processing. Together, these results underscore the ubiquity of prediction in language processing, showing that the brain spontaneously predicts upcoming language at multiple levels of abstraction.


Assuntos
Encéfalo , Compreensão , Idioma , Percepção da Fala , Encéfalo/fisiologia , Compreensão/fisiologia , Humanos , Linguística , Redes Neurais de Computação , Semântica , Percepção da Fala/fisiologia
3.
J Neurosci ; 43(26): 4867-4883, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37221093

RESUMO

To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses to the words themselves are changed. In a step toward understanding how the brain builds sentence structure, the present study concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants (51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using temporal response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical information (word frequency), from responses to sensory and distributional variables. The results suggest that delta-band responses to words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word frequency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sentences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta band, the amplitude was larger in the word list condition ∼100 milliseconds in right frontal areas. We conclude that low-frequency responses to words are changed by sentential context. The results of this study show how the neural representation of words is affected by structural context and as such provide insight into how the brain instantiates compositionality in language.SIGNIFICANCE STATEMENT Human language is unprecedented in its combinatorial capacity: we are capable of producing and understanding sentences we have never heard before. Although the mechanisms underlying this capacity have been described in formal linguistics and cognitive science, how they are implemented in the brain remains to a large extent unknown. A large body of earlier work from the cognitive neuroscientific literature implies a role for delta-band neural activity in the representation of linguistic structure and meaning. In this work, we combine these insights and techniques with findings from psycholinguistics to show that meaning is more than the sum of its parts; the delta-band MEG signal differentially reflects lexical information inside and outside sentence structures.


Assuntos
Encéfalo , Idioma , Humanos , Feminino , Encéfalo/fisiologia , Linguística , Psicolinguística , Mapeamento Encefálico , Semântica
4.
J Cogn Neurosci ; 36(4): 730-733, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307128

RESUMO

The papers collected in this Special Focus, prompted by S. Buergers and U. Noppeney [The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022], have raised several interesting ideas, arguments, and empirical results relating to the alpha temporal resolution hypothesis. Here we briefly respond to these, and in the process emphasize four challenges for future research: defining the scope and limitation of the hypothesis; developing experimental paradigms and study designs that rigorously test its tenets; decomposing the scalp-level signal and isolating underlying neural circuits; and bringing uniformity to the current diversity of analysis and statistical methods. Addressing these challenges will facilitate the progression from merely correlating alpha frequency with various perceptual phenomena to establishing whether and (if so) how alpha frequency influences sensory integration and segregation.


Assuntos
Percepção Visual , Humanos , Percepção Visual/fisiologia
5.
J Cogn Neurosci ; 36(4): 655-690, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330177

RESUMO

An intriguing question in cognitive neuroscience is whether alpha oscillations shape how the brain transforms the continuous sensory inputs into distinct percepts. According to the alpha temporal resolution hypothesis, sensory signals arriving within a single alpha cycle are integrated, whereas those in separate cycles are segregated. Consequently, shorter alpha cycles should be associated with smaller temporal binding windows and higher temporal resolution. However, the evidence supporting this hypothesis is contentious, and the neural mechanisms remain unclear. In this review, we first elucidate the alpha temporal resolution hypothesis and the neural circuitries that generate alpha oscillations. We then critically evaluate study designs, experimental paradigms, psychophysics, and neurophysiological analyses that have been employed to investigate the role of alpha frequency in temporal binding. Through the lens of this methodological framework, we then review evidence from between-subject, within-subject, and causal perturbation studies. Our review highlights the inherent interpretational ambiguities posed by previous study designs and experimental paradigms and the extensive variability in analysis choices across studies. We also suggest best practice recommendations that may help to guide future research. To establish a mechanistic role of alpha frequency in temporal parsing, future research is needed that demonstrates its causal effects on the temporal binding window with consistent, experimenter-independent methods.


Assuntos
Encéfalo , Percepção Visual , Humanos , Percepção Visual/fisiologia , Encéfalo/fisiologia , Projetos de Pesquisa
6.
Psychophysiology ; : e14624, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873838

RESUMO

Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a "cognitive event-related potential effect"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.

7.
Behav Res Methods ; 56(3): 2675-2691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382814

RESUMO

When perceiving the world around us, we are constantly integrating pieces of information. The integrated experience consists of more than just the sum of its parts. For example, visual scenes are defined by a collection of objects as well as the spatial relations amongst them and sentence meaning is computed based on individual word semantic but also syntactic configuration. Having quantitative models of such integrated representations can help evaluate cognitive models of both language and scene perception. Here, we focus on language, and use a behavioral measure of perceived similarity as an approximation of integrated meaning representations. We collected similarity judgments of 200 subjects rating nouns or transitive sentences through an online multiple arrangement task. We find that perceived similarity between sentences is most strongly modulated by the semantic action category of the main verb. In addition, we show how non-negative matrix factorization of similarity judgment data can reveal multiple underlying dimensions reflecting both semantic as well as relational role information. Finally, we provide an example of how similarity judgments on sentence stimuli can serve as a point of comparison for artificial neural networks models (ANNs) by comparing our behavioral data against sentence similarity extracted from three state-of-the-art ANNs. Overall, our method combining the multiple arrangement task on sentence stimuli with matrix factorization can capture relational information emerging from integration of multiple words in a sentence even in the presence of strong focus on the verb.


Assuntos
Idioma , Semântica , Humanos , Julgamento
8.
J Neurosci ; 42(29): 5745-5754, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35680410

RESUMO

Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such "earliness" is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production.SIGNIFICANCE STATEMENT Current psycholinguistic models make divergent predictions on how a preverbal message is mapped onto articulatory output during the language planning. Serial models predict a cascading sequence of hierarchically organized neural computations from conceptualization to articulation. In contrast, parallel models posit early simultaneous activation of multiple conceptual, phonological, and articulatory information in the language system. Here we asked whether such earliness is a distinctive property of the neural dynamics of word production. The combination of the millisecond precision of MEG with multivariate pattern analyses revealed subsequent onset times for the neural events supporting semantic and phonological/phonetic operations, progressing from posterior occipitotemporal to frontal sensor areas. The findings bring new insights for refining current theories of language production.


Assuntos
Idioma , Fala , Humanos , Masculino , Estimulação Luminosa , Psicolinguística , Semântica , Fala/fisiologia
9.
Cogn Neuropsychol ; 40(5-6): 298-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38105574

RESUMO

Speaking requires the temporally coordinated planning of core linguistic information, from conceptual meaning to articulation. Recent neurophysiological results suggested that these operations involve a cascade of neural events with subsequent onset times, whilst competing evidence suggests early parallel neural activation. To test these hypotheses, we examined the sources of neuromagnetic activity recorded from 34 participants overtly naming 134 images from 4 object categories (animals, tools, foods and clothes). Within each category, word length and phonological neighbourhood density were co-varied to target phonological/phonetic processes. Multivariate pattern analyses (MVPA) searchlights in source space decoded object categories in occipitotemporal and middle temporal cortex, and phonological/phonetic variables in left inferior frontal (BA 44) and motor cortex early on. The findings suggest early activation of multiple variables due to intercorrelated properties and interactivity of processing, thus raising important questions about the representational properties of target words during the preparatory time enabling overt speaking.


Assuntos
Idioma , Fonética , Humanos , Lobo Temporal , Mapeamento Encefálico
10.
J Neurosci ; 41(46): 9581-9592, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34593605

RESUMO

Alpha activity (8-14 Hz) is the dominant rhythm in the awake brain and is thought to play an important role in setting the internal state of the brain. Previous work has associated states of decreased alpha power with enhanced neural excitability. However, evidence is mixed on whether and how such excitability enhancement modulates sensory signals of interest versus noise differently, and what, if any, are the consequences for subsequent perception. Here, human subjects (male and female) performed a visual detection task in which we manipulated their decision criteria in a blockwise manner. Although our manipulation led to substantial criterion shifts, these shifts were not reflected in prestimulus alpha band changes. Rather, lower prestimulus alpha power in occipital-parietal areas improved perceptual sensitivity and enhanced information content decodable from neural activity patterns. Additionally, oscillatory alpha phase immediately before stimulus presentation modulated accuracy. Together, our results suggest that alpha band dynamics modulate sensory signals of interest more strongly than noise.SIGNIFICANCE STATEMENT The internal state of our brain fluctuates, giving rise to variability in perception and action. Neural oscillations, most prominently in the alpha band, have been suggested to play a role in setting this internal state. Here, we show that ongoing alpha band activity in occipital-parietal regions predicts the quality of visual information decodable in neural activity patterns and subsequently the human observer's sensitivity in a visual detection task. Our results provide comprehensive evidence that visual representation is modulated by ongoing alpha band activity and advance our understanding on how, when faced with unchanging external stimuli, internal neural fluctuations influence perception and behavior.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Percepção Visual/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia
11.
Neuroimage ; 260: 119422, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35781078

RESUMO

Source reconstruction of magnetoencephalography (MEG) has been used to assess brain reorganization after brain damage, such as stroke. Lesions result in parts of the brain having an electrical conductivity that differs from the normal values. The effect this has on the forward solutions (i.e., the propagation of electric currents and magnetic fields generated by cortical activity) is well predictable. However, their influence on source localization results is not well characterized and understood. This is specifically a concern for patient studies with asymmetric (i.e., within one hemisphere) lesions focusing on asymmetric and lateralized brain activity, such as language. In particular, it is good practice to consider the level of geometrical detail that is necessary to compute and interpret reliable source reconstruction results. To understand the effect of lesions on source estimates and propose recommendations to researchers working with clinical data, in this study we consider the trade off between improved accuracy and the additional effort to compute more realistic head models, with the aim to answer the question whether the additional effort is worth it. We simulated and analyzed the effects of a stroke lesion (i.e., an asymmetrically distributed CSF-filled cavity) in the head model with three different sizes and locations when performing MEG source reconstruction using a finite element method (FEM). We compared the effect of the lesion with a homogeneous head model that neglects the lesion. We computed displacement and attenuation/amplification maps to quantify the localization errors and signal magnitude modulation. We conclude that brain lesions leading to asymmetrically distributed CSF-filled cavities should be modeled when performing MEG source reconstruction, especially when investigating deep sources or post-stroke hemispheric lateralization of functions. The strongest effects are not only visible in perilesional areas, but can extend up to 20 mm from the lesion. Bigger lesions lead to stronger effects impacting larger areas, independently from the lesion location. Lastly, we conclude that more priority should be given to usability and accessibility of the required computational tools, to allow researchers with less technical expertise to use the improved methods that are available but currently not widely adopted yet.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Encéfalo , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Cabeça , Humanos , Magnetoencefalografia/métodos
12.
Neuroimage ; 252: 119049, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248707

RESUMO

Music is often described in the laboratory and in the classroom as a beneficial tool for memory encoding and retention, with a particularly strong effect when words are sung to familiar compared to unfamiliar melodies. However, the neural mechanisms underlying this memory benefit, especially for benefits related to familiar music are not well understood. The current study examined whether neural tracking of the slow syllable rhythms of speech and song is modulated by melody familiarity. Participants became familiar with twelve novel melodies over four days prior to MEG testing. Neural tracking of the same utterances spoken and sung revealed greater cerebro-acoustic phase coherence for sung compared to spoken utterances, but did not show an effect of familiar melody when stimuli were grouped by their assigned (trained) familiarity. However, when participant's subjective ratings of perceived familiarity were used to group stimuli, a large effect of familiarity was observed. This effect was not specific to song, as it was observed in both sung and spoken utterances. Exploratory analyses revealed some in-session learning of unfamiliar and spoken utterances, with increased neural tracking for untrained stimuli by the end of the MEG testing session. Our results indicate that top-down factors like familiarity are strong modulators of neural tracking for music and language. Participants' neural tracking was related to their perception of familiarity, which was likely driven by a combination of effects from repeated listening, stimulus-specific melodic simplicity, and individual differences. Beyond simply the acoustic features of music, top-down factors built into the music listening experience, like repetition and familiarity, play a large role in the way we attend to and encode information presented in a musical context.


Assuntos
Música , Canto , Percepção Auditiva , Humanos , Reconhecimento Psicológico , Fala
13.
Neuroimage ; 246: 118789, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890794

RESUMO

Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Adulto , Humanos , Modelos Teóricos
14.
Eur J Neurosci ; 55(11-12): 3191-3208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33319447

RESUMO

Sustained attention has long been thought to benefit perception in a continuous fashion, but recent evidence suggests that it affects perception in a discrete, rhythmic way. Periodic fluctuations in behavioral performance over time, and modulations of behavioral performance by the phase of spontaneous oscillatory brain activity point to an attentional sampling rate in the theta or alpha frequency range. We investigated whether such discrete sampling by attention is reflected in periodic fluctuations in the decodability of visual stimulus orientation from magnetoencephalographic (MEG) brain signals. In this exploratory study, human subjects attended one of the two grating stimuli, while MEG was being recorded. We assessed the strength of the visual representation of the attended stimulus using a support vector machine (SVM) to decode the orientation of the grating (clockwise vs. counterclockwise) from the MEG signal. We tested whether decoder performance depended on the theta/alpha phase of local brain activity. While the phase of ongoing activity in the visual cortex did not modulate decoding performance, theta/alpha phase of activity in the frontal eye fields and parietal cortex, contralateral to the attended stimulus did modulate decoding performance. These findings suggest that phasic modulations of visual stimulus representations in the brain are caused by frequency-specific top-down activity in the frontoparietal attention network, though the behavioral relevance of these effects could not be established.


Assuntos
Córtex Visual , Percepção Visual , Humanos , Magnetoencefalografia , Lobo Parietal , Estimulação Luminosa
15.
J Neurosci ; 40(14): 2914-2924, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111697

RESUMO

The meaning of a sentence can be understood, whether presented in written or spoken form. Therefore, it is highly probable that brain processes supporting language comprehension are at least partly independent of sensory modality. To identify where and when in the brain language processing is independent of sensory modality, we directly compared neuromagnetic brain signals of 200 human subjects (102 males) either reading or listening to sentences. We used multiset canonical correlation analysis to align individual subject data in a way that boosts those aspects of the signal that are common to all, allowing us to capture word-by-word signal variations, consistent across subjects and at a fine temporal scale. Quantifying this consistency in activation across both reading and listening tasks revealed a mostly left-hemispheric cortical network. Areas showing consistent activity patterns included not only areas previously implicated in higher-level language processing, such as left prefrontal, superior and middle temporal areas, and anterior temporal lobe, but also parts of the control network as well as subcentral and more posterior temporal-parietal areas. Activity in this supramodal sentence-processing network starts in temporal areas and rapidly spreads to the other regions involved. The findings indicate not only the involvement of a large network of brain areas in supramodal language processing but also that the linguistic information contained in the unfolding sentences modulates brain activity in a word-specific manner across subjects.SIGNIFICANCE STATEMENT The brain can extract meaning from written and spoken messages alike. This requires activity of both brain circuits capable of processing sensory modality-specific aspects of the input signals as well as coordinated brain activity to extract modality-independent meaning from the input. Using traditional methods, it is difficult to disentangle modality-specific activation from modality-independent activation. In this work, we developed and applied a multivariate methodology that allows for a direct quantification of sensory modality-independent brain activity, revealing fast activation of a wide network of brain areas, both including and extending beyond the core network for language.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Idioma , Rede Nervosa/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
16.
Neuroimage ; 245: 118660, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715317

RESUMO

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each combination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, and data length) and aim to provide recommendations tailored to particular research questions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Vias Neurais/fisiologia , Algoritmos , Simulação por Computador , Eletroencefalografia , Entropia , Humanos , Magnetoencefalografia/métodos , Modelos Neurológicos , Distribuição Normal , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
17.
Neuroimage ; 244: 118543, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508893

RESUMO

The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The "HCP-style" neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium.


Assuntos
Conectoma/história , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética , Feminino , História do Século XXI , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Neuroimagem , Estudos Retrospectivos
18.
J Neurosci ; 39(33): 6498-6512, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196933

RESUMO

The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.SIGNIFICANCE STATEMENT Memory is an endogenous source of information based on experience. While neural oscillations encode autobiographic memories in the temporal domain, little is known on their contribution to memory representations of human speech. Our electrocortical recordings in participants who maintain sentences in memory identify the phase of left frontotemporal beta oscillations as the most prominent information carrier of sentence identity. These observations provide evidence for a theoretical model on speech memory representations and explain why interfering with beta oscillations in the left inferior frontal cortex diminishes verbal working memory capacity. The lack of sentence identity coding at the syllabic rate suggests that sentences are represented in memory in a more abstract form compared with speech coding during speech perception and production.


Assuntos
Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Neuroimage ; 223: 117351, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898680

RESUMO

Rhythmic brain activity may reflect a functional mechanism that facilitates cortical processing and dynamic interareal interactions and thereby give rise to complex behavior. Using magnetoencephalography (MEG), we investigated rhythmic brain activity in a brain-wide network and their relation to behavior, while human subjects executed a variant of the Simon task, a simple stimulus-response task with well-studied behavioral effects. We hypothesized that the faster reaction times (RT) on stimulus-response congruent versus incongruent trials are associated with oscillatory power changes, reflecting a change in local cortical activation. Additionally, we hypothesized that the faster reaction times for trials following instances with the same stimulus-response contingency (the so-called Gratton effect) is related to contingency-induced changes in the state of the network, as measured by differences in local spectral power and interareal phase coherence. This would be achieved by temporarily upregulating the connectivity strength between behaviorally relevant network nodes. We identified regions-of-interest that differed in local synchrony during the response phase of the Simon task. Within this network, spectral power in none of the nodes in either of the studied frequencies was significantly different in the pre-cue window of the subsequent trial. Nor was there a significant difference in coherence between the task-relevant nodes that could explain the superior behavioral performance after compatible consecutive trials.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Conflito Psicológico , Feminino , Humanos , Magnetoencefalografia , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
20.
Neuroimage ; 216: 116797, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278091

RESUMO

Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 â€‹dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Adulto , Mapeamento Encefálico/normas , Simulação por Computador , Eletroencefalografia/normas , Humanos , Magnetoencefalografia/normas , Imagens de Fantasmas , Estimulação Física , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA