RESUMO
A reliable and above all, rapid antimicrobial susceptibility test (AST) is required for the diganostics of blood stream infections (BSI). In this study, resistance testing using DxM MicroScan WalkAway (MicroScan) from a 4-h subculture is compared with the standard overnight culture (18-24 h). Randomly selected positive blood cultures (PBC, n = 102) with gram-negative bacteria were included in the study. PBC were sub-cultured onto appropriate agar plates and AST by MicroScan was performed after 4 h of incubation and repeated after incubation for 18-24 h as standard. In a total of 1909 drug-strain pairs, the 4-h subculture approach showed a very high essential agreement (EA) (98.6%) and categorical agreement (CA) (97.1%) compared with the standard. The incidence of minor error (mE), major error (ME), very major error (VME), and adjusted very major error (aVME) was 1.1%, 0.4%, 12.9%, and 5.3%, respectively. In summary, the use of 4-h subcultures for resistance testing with the MicroScan offers a very reliable and easy to realize time saving when testing positive blood cultures with gram-negative bacteria.
Assuntos
Antibacterianos , Hemocultura , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Humanos , Hemocultura/métodos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bacteriemia/microbiologia , Fatores de Tempo , Infecções por Bactérias Gram-Negativas/microbiologiaRESUMO
BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.
Assuntos
COVID-19 , Doenças Transmissíveis Importadas , Humanos , SARS-CoV-2/genética , Viagem , Doenças Transmissíveis Importadas/epidemiologia , COVID-19/epidemiologia , Filogenia , Busca de Comunicante , Alemanha/epidemiologia , GenômicaRESUMO
Oncogenic RAS provides crucial survival signaling for up to half of multiple myeloma cases, but has so far remained a clinically undruggable target. RAL is a member of the RAS superfamily of small GTPases and is considered to be a potential mediator of oncogenic RAS signaling. In primary multiple myeloma, we found RAL to be overexpressed in the vast majority of samples when compared with pre-malignant monoclonal gammopathy of undetermined significance or normal plasma cells. We analyzed the functional effects of RAL abrogation in myeloma cell lines and found that RAL is a critical mediator of survival. RNAi-mediated knockdown of RAL resulted in rapid induction of tumor cell death, an effect which was independent from signaling via mitogen-activated protein kinase, but appears to be partially dependent on Akt activity. Notably, RAL activation was not correlated with the presence of activating RAS mutations and remained unaffected by knockdown of oncogenic RAS. Furthermore, transcriptome analysis yielded distinct RNA expression signatures after knockdown of either RAS or RAL. Combining RAL depletion with clinically relevant anti-myeloma agents led to enhanced rates of cell death. Our data demonstrate that RAL promotes multiple myeloma cell survival independently of oncogenic RAS and, thus, this pathway represents a potential therapeutic target in its own right.
Assuntos
GTP Fosfo-Hidrolases , Mieloma Múltiplo , Sobrevivência Celular/genética , Genes ras , Humanos , Mieloma Múltiplo/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismoRESUMO
BACKGROUND AND AIM: Several studies observed alterations in the gut microbiota in patients with non-alcoholic fatty liver disease (NAFLD). However, analyzed patient populations and methods strongly differ among these studies. The aim of this study was to prove the reproducibility of published results and to provide a detailed overview of all findings in our NAFLD cohort using next generation sequencing methods. METHODS: The individual taxonomic microbiota composition of fecal samples from 90 NAFLD patients and 21 healthy controls was analyzed using 16S rRNA gene sequencing. Study participants were grouped according to their disease stage and compared regarding their gut microbiota composition. Studies were identified from PubMed listed publications, and the results were compared with the findings in our cohort. RESULTS: Results from 13 identified studies were compared with our data. A decreased abundance of the Bacteroidetes and Ruminococcaceae as well as an increased abundance of Lactobacillaceae and Veillonellaceae and Dorea were the most frequently reported changes among NAFLD patients in 4/13, 5/13, 4/13, 2/13, and 3/13 studies, respectively. Even though these alterations in the gut microbiota composition were also observed in our patient cohort, the majority of published differences could not be reproduced, neither in our own nor in other NAFLD cohort studies. CONCLUSION: Despite repeatedly reproduced abundance patterns of specific bacteria, the heterogeneous study results did not reveal a consistent disease specific gut microbiota signature. Further prospective studies with homogenous patient cohorts and standardized methods are necessary to phenotype NAFLD by the gut microbiota.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/microbiologia , Fenótipo , Adulto , Bacteroidetes , Estudos Transversais , Feminino , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactobacillaceae , Masculino , Estudos Prospectivos , RNA Ribossômico 16S , Ruminococcus , Veillonella , Adulto JovemRESUMO
Despite continuous interest in multiple sclerosis (MS) research, there is still a lack of neuroprotective strategies, because the main focus has remained on modulating the immune response. Here we performed in-depth analysis of neurodegeneration in experimental autoimmune encephalomyelitis (EAE) and in in vitro studies regarding the effect of the well-established L-type calcium channel antagonist nimodipine. Nimodipine treatment attenuated clinical EAE and spinal cord degeneration and promoted remyelination. Surprisingly, we observed calcium channel-independent effects on microglia, resulting in apoptosis. These effects were cell-type specific and irrespective of microglia polarization. Apoptosis was accompanied by decreased levels of nitric oxide (NO) and inducible NO synthase (iNOS) in cell culture as well as decreased iNOS and reactive oxygen species levels in EAE. In addition, increased numbers of Olig2+APC+ oligodendrocytes were detected. Overall, nimodipine application seems to generate a favorable environment for regenerative processes and therefore could be a treatment option for MS, because it combines features of immunomodulation with beneficial effects on neuroregeneration.
Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Nimodipina/farmacologia , Remielinização/fisiologia , Animais , Canais de Cálcio Tipo L/química , Células Cultivadas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Espécies Reativas de Oxigênio/metabolismo , Remielinização/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologiaRESUMO
We found earlier that ectopic expression of the cytidine deaminase APOBEC3G (A3G) in Vero cells inhibits measles virus (MV), respiratory syncytial virus, and mumps virus, while the mechanism of inhibition remained unclear. A microarray analysis revealed that in A3G-transduced Vero cells, several cellular transcripts were differentially expressed, suggesting that A3G regulates the expression of host factors. One of the most upregulated host cell factors, REDD1 (regulated in development and DNA damage response-1, also called DDIT4), reduced MV replication â¼10-fold upon overexpression in Vero cells. REDD1 is an endogenous inhibitor of mTORC1 (mammalian target of rapamycin complex-1), the central regulator of cellular metabolism. Interestingly, rapamycin reduced the MV replication similarly to REDD1 overexpression, while the combination of both did not lead to further inhibition, suggesting that the same pathway is affected. REDD1 silencing in A3G-expressing Vero cells abolished the inhibitory effect of A3G. In addition, silencing of A3G led to reduced REDD1 expression, confirming that its expression is regulated by A3G. In primary human peripheral blood lymphocytes (PBL), expression of A3G and REDD1 was found to be stimulated by phytohemagglutinin (PHA) and interleukin-2. Small interfering RNA (siRNA)-mediated depletion of A3G in PHA-stimulated PBL reduced REDD1 expression and increased viral titers, which corroborates our findings in Vero cells. Silencing of REDD1 also increased viral titers, confirming the antiviral role of REDD1. Finally, pharmacological inhibition of mTORC1 by rapamycin in PHA-stimulated PBL reduced viral replication to the level found in unstimulated lymphocytes, indicating that mTORC1 activity supports MV replication as a proviral host factor.IMPORTANCE Knowledge about host factors supporting or restricting virus replication is required for a deeper understanding of virus-cell interactions and may eventually provide the basis for therapeutic intervention. This work was undertaken predominantly to explain the mechanism of A3G-mediated inhibition of MV, a negative-strand RNA virus that is not affected by the deaminase activity of A3G acting on single-stranded DNA. We found that A3G regulates the expression of several cellular proteins, which influences the capacity of the host cell to replicate MV. One of these, REDD1, which modulates the cellular metabolism in a central position by regulating the kinase complex mTORC1, was identified as the major cellular factor impairing MV replication. These findings show interesting aspects of the function of A3G and the dependence of the MV replication on the metabolic state of the cell. Interestingly, pharmacological inhibition of mTORC1 can be utilized to inhibit MV replication in Vero cells and primary human peripheral blood lymphocytes.
Assuntos
Desaminase APOBEC-3G/genética , Vírus do Sarampo/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Replicação Viral/genética , Desaminase APOBEC-3G/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Replicação do DNA , Interações Hospedeiro-Patógeno/genética , Humanos , Interleucina-2/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Linfócitos/efeitos dos fármacos , Linfócitos/virologia , Vírus do Sarampo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Fito-Hemaglutininas/farmacologia , RNA Interferente Pequeno , Sirolimo/farmacologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Cell- and tissue-specific actions of glucocorticoids are mediated by the glucocorticoid receptor. Here, we demonstrate that the glucocorticoid receptor (GR) in macrophages is essential for cardiac healing after myocardial infarction. Compared with GRflox (wild-type controls), GRLysMCre mice that lacked GR in myeloid cells showed increased acute mortality as a result of cardiac rupture. Seven days after left coronary artery ligation, GRLysMCre mice exhibited worse cardiac function and adverse remodeling associated with impaired scar formation and angiogenic response to ischemic injury. Inactivation of GR altered the functional differentiation/maturation of monocyte-derived macrophages in the infarcted myocardium. Mechanistically, CD45+/CD11b+/Ly6G-/F4/80+ macrophages isolated from GRLysMCre infarcts showed deregulation of factors that control inflammation, neovascularization, collagen degradation, and scar tissue formation. Moreover, we demonstrate that cardiac fibroblasts sorted from the ischemic myocardium of GRLysMCre mice compared with cells isolated from injured GRflox hearts displayed higher matrix metalloproteinase 2 expression, and we provide evidence that the macrophage GR regulates myofibroblast differentiation in the infarct microenvironment during the early phase of wound healing. In summary, GR signaling in macrophages, playing a crucial role in tissue-repairing mechanisms, could be a potential therapeutic target during wound healing after ischemic myocardial injury.-Galuppo, P., Vettorazzi, S., Hövelmann, J., Scholz, C.-J., Tuckermann, J. P., Bauersachs, J., Fraccarollo, D. The glucocorticoid receptor in monocyte-derived macrophages is critical for cardiac infarct repair and remodeling.
Assuntos
Macrófagos/metabolismo , Monócitos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Receptores de Glucocorticoides/genéticaRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder that preferentially affects individuals of advanced age. Heritability estimates for AD range between 60 and 80%, but only few genetic risk factors have been identified so far. In the present explorative study, we aimed at characterizing the genetic contribution to late-onset AD in participants of the Vienna Transdanube Aging (VITA) longitudinal birth cohort study in a two-step approach. First, we performed a genome-wide screen of pooled DNA samples (n = 588) to identify allele frequency differences between AD patients and non-AD individuals using life-time diagnoses made at the age of 80 (t = 60 months). This analysis suggested a high proportion of brain-expressed genes required for cell adhesion, cell signaling and cell morphogenesis, and also scored in known AD risk genes. In a second step, we confirmed associations using individual genotypes of top-ranked markers examining AD diagnoses as well as the dimensional scores: FULD and MMSE determined up to the age of 82.5 (t = 90 months). Taken together, our study proposes genes ANKS1B, ENST00000414107, LOC100505811, SLC22A14, QRFPR, ZDHHC8P1, ADAMTS3 and PPFIA1 as possible new candidates involved in the etiology of late-onset AD, with further research being needed to clarify their exact roles.
Assuntos
Envelhecimento/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Áustria/epidemiologia , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Estudos Longitudinais , MasculinoRESUMO
Peripheral blood mononuclear cells (PBMCs) are the only source of human lymphoid cells routinely available for immunomonitoring of T-cell responses to microbial and tumor-associated antigens. However, previous work in mice and humans had indicated that CD4 T cells transiently lose antigen sensitivity when cellular contacts are lost (eg, by entering the circulation). Using the simple and robust protocol for resetting T cells to original reactivity (RESTORE; ie, preculturing PBMCs for 2 days at a high cell density before initiation of antigenic stimulation), we show that CD8 T-cell responses to viral and tumor-associated antigens are greatly underestimated in blood, and sometimes even remain undetected, if conventional, unprocessed PBMC cultures are used. The latter finding is particularly striking with regard to the appearance of Wilms tumor 1 protein-specific CD8 T-cell responses in leukemia patients after allogeneic bone marrow transplantation. The dramatic increase in antigen sensitivity of "restored" CD8 T cells is associated with phosphorylation of proximal T-cell receptor signaling components, and with the upregulation of genes involved in aerobic glycolysis, thereby increasing T-cell functionality. The RESTORE protocol permits a more meaningful monitoring of CD8 memory T-cell responses to viral infections and tumors and vaccination success. Furthermore, when generating T-cell lines for adoptive T-cell therapy, it avoids the loss of those clones, which strictly depend on the primed status conferred by cellular interactions in the tissue context for their initial reactivation by antigen. The data reported in this article have been deposited in the Gene Expression Omnibus database (accession number GSE63430).
Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cultura de Células/métodos , Leucócitos Mononucleares/citologia , Especificidade do Receptor de Antígeno de Linfócitos T , Contagem de Células , Células Cultivadas , Criança , Humanos , Leucócitos Mononucleares/fisiologiaRESUMO
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) in young adults that has serious negative socioeconomic effects. In addition to symptoms caused by CNS pathology, the majority of MS patients frequently exhibit gastrointestinal dysfunction, which was previously either explained by the presence of spinal cord lesions or not directly linked to the autoimmune etiology of the disease. Here, we studied the enteric nervous system (ENS) in a B cell- and antibody-dependent mouse model of MS by immunohistochemistry and electron microscopy at different stages of the disease. ENS degeneration was evident prior to the development of CNS lesions and the onset of neurological deficits in mice. The pathology was antibody mediated and caused a significant decrease in gastrointestinal motility, which was associated with ENS gliosis and neuronal loss. We identified autoantibodies against four potential target antigens derived from enteric glia and/or neurons by immunoprecipitation and mass spectrometry. Antibodies against three of the target antigens were also present in the plasma of MS patients as confirmed by ELISA. The analysis of human colon resectates provided evidence of gliosis and ENS degeneration in MS patients compared to non-MS controls. For the first time, this study establishes a pathomechanistic link between the well-established autoimmune attack on the CNS and ENS pathology in MS, which might provide a paradigm shift in our current understanding of the immunopathogenesis of the disease with broad diagnostic and therapeutic implications.
Assuntos
Autoanticorpos/sangue , Gastroenteropatias/etiologia , Esclerose Múltipla , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/ultraestrutura , Feminino , Adjuvante de Freund/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/complicações , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Músculo Liso/patologia , Músculo Liso/ultraestrutura , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Plexo Mientérico/patologia , Plexo Mientérico/ultraestrutura , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/toxicidade , Tubulina (Proteína)/metabolismoRESUMO
In a previous study, we identified the single nucleotide polymorphism (SNP) rs4500567, located in the upstream region of tetraspanin 8 (TSPAN8), to be associated with bipolar disorder (BD). Due to its proximal position, the SNP might have an impact on promoter activity, thus on TSPAN8 gene expression. We investigated the impact of rs4500567 on TSPAN8 expression in vitro with luciferase-based promoter assays in human embryonic kidney (HEK293) and neuroblastoma cells (SH-SY5Y), and its effect on expression of downstream associated genes by microarray-based transcriptome analyses. Immunohistochemical localization studies on murine brain slices served to identify possible target regions of altered TSPAN8 expression in the brain. Promoter assays revealed decreased TSPAN8 expression in presence of the minor allele. Transcriptome analyses of TSPAN8-knockdown cells, mirroring the effects of putatively reduced TSPAN8 expression in minor allele carriers, resulted in 231 differentially expressed genes with enrichments of relevant signaling pathways for psychiatric disorders and neuronal development. Finally, we demonstrate Tspan8 abundance in mouse cerebellum and hippocampus. These findings point to a role of TSPAN8 in neuronal function or development. Considering a rather protective effect of the minor allele of rs4500567, our findings reveal a possible novel mechanism that contributes to the development of BD.
Assuntos
Transtorno Bipolar/patologia , Encéfalo/patologia , Regulação da Expressão Gênica , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Tetraspaninas/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Tetraspaninas/genética , Células Tumorais CultivadasRESUMO
A painful event establishes two opponent memories: cues that are associated with pain onset are remembered negatively, whereas cues that coincide with the relief at pain offset acquire positive valence. Such punishment- versus relief-memories are conserved across species, including humans, and the balance between them is critical for adaptive behaviour with respect to pain and trauma. In the fruit fly, Drosophila melanogaster as a study case, we found that both punishment- and relief-memories display natural variation across wild-derived inbred strains, but they do not covary, suggesting a considerable level of dissociation in their genetic effectors. This provokes the question whether there may be heritable inter-individual differences in the balance between these opponent memories in man, with potential psycho-clinical implications.
Assuntos
Drosophila melanogaster/genética , Animais , Aprendizagem por Associação , Condicionamento Psicológico/fisiologia , Drosophila melanogaster/fisiologia , Eletrochoque , Variação Genética , Memória , Odorantes , Punição , Recompensa , OlfatoRESUMO
Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Citoesqueleto de Actina , Actinas/biossíntese , Benzotiazóis/farmacologia , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/biossíntese , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genéticaRESUMO
Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways.
Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , MicroRNAs/genética , Artéria Poplítea/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/cirurgia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Hibridização In Situ , Inflamação , MicroRNAs/metabolismo , Especificidade de Órgãos , Artéria Poplítea/patologia , Artéria Poplítea/cirurgia , Transdução de Sinais , TranscriptomaRESUMO
Regulator of G-protein Signaling 2 (RGS2) is a key regulator of G-protein-coupled signaling pathways involved in fear and anxiety. Data from rodent models and genetic analysis of anxiety-related traits and disorders in humans suggest down-regulation of RGS2 expression to be a risk factor for anxiety. Here we investigated, whether genetic variation in microRNAs mediating posttranscriptional down-regulation of RGS2 may be a risk factor for anxiety as well. 75 microRNAs predicted to regulate RGS2 were identified by four bioinformatic algorithms and validated experimentally by luciferase reporter gene assays. Specificity was confirmed for six microRNAs (hsa-miR-1271-5p, hsa-miR-22-3p, hsa-miR-3591-3p, hsa-miR-377-3p, hsa-miR-4717-5p, hsa-miR-96-5p) by disrupting their seed sequence at the 3' untranslated region of RGS2. Hsa-miR-4717-5p showed the most robust effect on RGS2 and regulated two other candidate genes of anxiety disorders (CNR1 and IKBKE) as well. Two SNPs (rs150925, rs161427) within and 1,000 bp upstream of the hostgene of hsa-miR-4717-5p (MIR4717) show a minor allele frequency greater than 0.05. Both were in high linkage disequilibrium (r(2) = 1, D' = 1) and both major (G) alleles showed a trend for association with panic disorder with comorbid agoraphobia in one of two patient/control samples (combined n(patients) = 497). Dimensional anxiety traits, as described by Anxiety Sensitivity Index (ASI) and Agoraphobic Cognitions Questionnaire (ACQ) were significantly higher among carriers of both major (G) alleles in a combined patient/control sample (n(combined) = 831). Taken together, data indicate that MIR4717 regulates human RGS2 and contributes to the genetic risk towards anxiety-related traits.
Assuntos
Transtornos de Ansiedade/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/metabolismo , Proteínas RGS/genética , Regiões 3' não Traduzidas/genética , Adulto , Agorafobia/genética , Alelos , Estudos de Casos e Controles , Comorbidade , Biologia Computacional , Feminino , Genes Reporter , Estudos de Associação Genética , Humanos , Modelos Lineares , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Transtorno de Pânico/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas RGS/metabolismo , Reprodutibilidade dos Testes , Fatores de RiscoRESUMO
Prenatal stress (PS) exposure is known to increase the risk of developing emotional disorders like major depression in later life. However, some individuals do not succumb to adversity following developmental stress exposure, a phenomenon referred to as resilience. To date, the molecular mechanisms explaining why some subjects are vulnerable and others more resilient to PS are far from understood. Recently, we have shown that the serotonin transporter (5-HTT) gene may play a modulating role in rendering individuals susceptible or resilient to PS. However, it is not clear which molecular players are mediating the interaction between PS and the 5-Htt genotype in the context of vulnerability and resilience to PS. For this purpose, we performed a microarray study with the help of Affymetrix GeneChip® Mouse Genome 430 2.0 Array, in which we separated wild-type and heterozygous 5-Htt-deficient (5-Htt+/-) PS offspring into susceptible and resilient offspring according to their performance in the forced swim test. Performance-oriented LIMMA analysis on the mRNA expression microarray data was followed by subsequent Spearman's correlation analysis linking the individual qRT-PCR mRNA expression data to various anxiety- and depression-related behavioral and neuroendocrine measures. Results indicate that, amongst others, Fos-induced growth factor (Figf), galanin receptor 3 (Galr3), growth hormone (Gh) and prolactin (Prl) were differentially expressed specifically in resilient offspring when compared to controls, and that the hippocampal expression of these genes showed several strong correlations with various measures of the hypothalamus-pituitary-adrenal axis (re)activity. In conclusion, there seems to be an intricate interplay between the expression of Figf, Galr3, Gh and Prl and neuroendocrine regulation, which may be critical in mediating resilience to PS exposure. More insight into the exact role of these molecular players may significantly enhance the development of new treatment strategies for stress-related emotional disorders.
Assuntos
Comportamento Animal/fisiologia , Cortisona/metabolismo , Predisposição Genética para Doença , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Estresse Psicológico/genética , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hormônio do Crescimento/genética , Camundongos , Gravidez , Prolactina/genética , Receptor Tipo 3 de Galanina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Psicológico/metabolismo , Fator D de Crescimento do Endotélio Vascular/genéticaRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is the most frequent psychiatric disorder in children, where it displays a global prevalence of 5 %. In up to 50 % of the cases, ADHD may persist into adulthood (aADHD), where it is often comorbid with personality disorders. Due to a potentially heritable nature of this comorbidity, we hypothesized that their genetic framework may contain common risk-modifying genes. SPOCK3, a poorly characterized, putatively Ca(2+)-binding extracellular heparan/chondroitin sulfate proteoglycan gene encoded by the human chromosomal region 4q32.3, was found to be associated with polymorphisms among the top ranks in a genome-wide association study (GWAS) on ADHD and a pooled GWAS on personality disorder (PD). We therefore genotyped 48 single nucleotide polymorphisms (SNPs) representative of the SPOCK3 gene region in 1,790 individuals (n aADHD = 624, n PD = 630, n controls = 536). In this analysis, we found two SNPs to be nominally associated with aADHD (rs7689440, rs897511) and four PD-associated SNPs (rs7689440, rs897511, rs17052671 and rs1485318); the latter even reached marginal significance after rigorous Bonferroni correction. Bioinformatics tools predicted a possible influence of rs1485318 on transcription factor binding, whereas the other candidate SNPs may have effects on alternative splicing. Our results suggest that SPOCK3 may modify the genetic risk for ADHD and PD; further studies are, however, needed to identify the underlying mechanisms.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença/genética , Transtornos da Personalidade/genética , Polimorfismo de Nucleotídeo Único/genética , Proteoglicanas/genética , Adulto , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Inventário de Personalidade , Escalas de Graduação Psiquiátrica , Fatores de RiscoRESUMO
Alzheimer's disease (AD) and depression (DE) are common psychiatric disorders strongly intertwined with one another. Nevertheless, etiology and early diagnosis of the disorders are still elusive. Several genetic variations have been suggested to associate with AD and DE, particularly in genes involved in the serotonergic system such as the serotonin transporter (SERT/SLC6A4), responsible for the removal from the synaptic cleft, and the monoamine-oxidase-A (MAOA), responsible for the presynaptic degradation of serotonin. Here, we attempt to characterize this pleiotropic effect for the triallelic SERT gene-linked polymorphic region (5HTTLPR) and for the MAOA-uVNTR, in participants in the Vienna-Transdanube-Aging (VITA)-study. The VITA-study is a community-based longitudinal study following a birth cohort (75 years old at baseline examination, n = 606) from Vienna for a period of 90 months with a regular follow-up interval of 30 months. Our main finding, confirming previous reports, is that the 5HTTLPR S-allele is a risk allele for DE (OR = 1.55 CI 95% 1.03-2.32) and its carriers had a steeper increase in SGDS sum score. No association to AD was found. MAOA-uVNTR did not associate with either AD or DE. However, in AD MAOA-uVNTR S-allele carriers a steeper increase of HAMD and STAI1 sum scores (P < 0.05) was observed. Although the VITA-study cohort is rather small with low power to detect gene alterations, the uniqueness of this very thoroughly investigated and homogenous cohort strengthens the results through exceptional data collection. Still, reinvestigation in a larger cohort similar to this, as well as a meta-analysis, is important to confirm these results.
Assuntos
Doença de Alzheimer/genética , Depressão/genética , Monoaminoxidase/genética , Polimorfismo Genético/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Feminino , Genótipo , Humanos , Estudos Longitudinais , MasculinoRESUMO
The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.
Assuntos
Metástase Linfática/genética , MicroRNAs/genética , Prognóstico , Neoplasias da Próstata/genética , Biomarcadores Tumorais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/patologia , Masculino , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapiaRESUMO
CD9 is the best-studied member of the tetraspanin family of transmembrane proteins. It is involved in various fundamental cellular processes and its altered expression is a characteristic of malignant cells of different origins. Despite numerous investigations confirming its fundamental role, the heterogeneity of CD9 or other tetraspanin proteins was considered only to be caused by posttranslational modification, rather than alternative splicing. Here we describe the first identification of CD9 transcript variants expressed by cell lines derived from fetal rat brain cells. Variant mRNA-B lacks a potential translation initiation codon in the alternative exon 1 and seems to be characteristic of the tumorigenic BT cell lines. In contrast, variant mRNA-C can be translated from a functional initiation codon located in its extended exon 2, and substantial amounts of this form detected in various tissues suggest a contribution to CD9 functions. From the alternative sequence of variant C, a different membrane topology (5 transmembrane domains) and a deviating spectrum of functions can be expected.