Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Basic Res Cardiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483601

RESUMO

Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (-19.6 ± 2.0% vs. -16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.

2.
Basic Res Cardiol ; 119(3): 453-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491291

RESUMO

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.


Assuntos
Modelos Animais de Doenças , Infarto do Miocárdio , Miocárdio , Linfócitos T Reguladores , Animais , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Linfócitos T Reguladores/imunologia , Miocárdio/patologia , Miocárdio/imunologia , Sus scrofa , Suínos , Ativação Linfocitária , Masculino , Transcriptoma , Feminino , Fatores de Tempo
3.
NMR Biomed ; 36(12): e5023, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37620002

RESUMO

A complementary safety assessment of the specific absorption rate (SAR) of the electromagnetic energy was performed in a prototype 8Tx/16Rx RF array for cardiac magnetic resonance imaging (MRI) at 7 T. The study aimed to address two critical aspects of 7-T SAR safety not always explicitly examined by coil vendors: (i) the influence of an RF-array position on a peak SAR value, and (ii) the risk of exceeding the permitted maximal SAR in the tissue surrounding conductive passive implants. The full-wave 3D electromagnetic simulations for the thorax with shifted array position and the whole-body volume in the presence of a dental retainer, an intrauterine contraceptive device (IUD), and a hip joint implant, were performed for two human voxel models. The effect of the array displacement on the SAR was simulated for seven array locations on the thorax shifted from the central position in different directions on 50 mm. The peak SAR values for both models were analyzed for the three phase-only transmit vectors optimized for B1 + homogeneity and transmit efficiency. Peak SAR values due to the shifts of the array position increase up to ≈50%. The worst-case peak SAR value for a dental retainer was found to be in the range of 10% of the maximal SAR in the tissue within the array's borders. For the IUD and artificial hip joint implants the effect was found to be negligible (peak SAR < 1% of the SAR within array borders). In addition to simulations for cardiac MRI, we performed a preliminary B1 + shimming and SAR-safety analysis for the same RF-array at various positions lower on the body trunk to assess a potential application in imaging abdominopelvic organs (prostate, kidney, and liver). The most promising target for an ad hoc alternative application of the array was found to be the prostate.


Assuntos
Imageamento por Ressonância Magnética , Tórax , Masculino , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Próstata
4.
MAGMA ; 36(2): 279-293, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37027119

RESUMO

INTRODUCTION: MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD: A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS: We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION: The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.


Assuntos
Inteligência Artificial , Imagem de Tensor de Difusão , Suínos , Animais , Razão Sinal-Ruído , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
5.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
6.
NMR Biomed ; 35(8): e4726, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277907

RESUMO

To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.


Assuntos
Coração , Imageamento por Ressonância Magnética , Animais , Cadáver , Desenho de Equipamento , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Suínos
7.
NMR Biomed ; 35(8): e4739, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393706

RESUMO

B0 inhomogeneity leads to imaging artifacts in cardiac magnetic resonance imaging (MRI), in particular dark band artifacts with steady-state free precession pulse sequences. The limited spatial resolution of MR-derived in vivo B0 maps and the lack of population data prevent systematic analysis of the problem at hand and the development of optimized B0 shim strategies. We used readily available clinical computed tomography (CT) images to simulate the B0 conditions in the human heart at high spatial resolution. Calculated B0 fields showed consistency with MRI-based B0 measurements. The B0 maps for both the simulations and in vivo measurements showed local field inhomogeneities in the vicinity of lung tips with dominant Z3 spherical harmonic terms in the field distribution. The presented simulation approach allows for the derivation of B0 field conditions at high spatial resolution from CT images and enables the development of subject- and population-specific B0 shim strategies for the human heart.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X
8.
NMR Biomed ; 35(6): e4685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967060

RESUMO

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Assuntos
Imagem de Tensor de Difusão , Coração , Anisotropia , Imagem de Tensor de Difusão/métodos , Coração/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Scand J Immunol ; 95(5): e13146, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35073416

RESUMO

1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analysed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg (iTreg) polarization conditions using TGF-ß. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-ß further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.


Assuntos
Calcifediol , Colecalciferol , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Calcifediol/metabolismo , Colecalciferol/farmacologia , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fenótipo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Vitamina D/análogos & derivados
10.
Magn Reson Med ; 86(4): 2179-2191, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002412

RESUMO

PURPOSE: Artificial neural networks show promising performance in automatic segmentation of cardiac MRI. However, training requires large amounts of annotated data and generalization to different vendors, field strengths, sequence parameters, and pathologies is limited. Transfer learning addresses this challenge, but specific recommendations regarding type and amount of data required is lacking. In this study, we assess data requirements for transfer learning to experimental cardiac MRI at 7T where the segmentation task can be challenging. In addition, we provide guidelines, tools, and annotated data to enable transfer learning approaches by other researchers and clinicians. METHODS: A publicly available segmentation model was used to annotate a publicly available data set. This labeled data set was subsequently used to train a neural network for segmentation of left ventricle and myocardium in cardiac cine MRI. The network is used as starting point for transfer learning to 7T cine data of healthy volunteers (n = 22; 7873 images) by updating the pre-trained weights. Structured and random data subsets of different sizes were used to systematically assess data requirements for successful transfer learning. RESULTS: Inconsistencies in the publically available data set were corrected, labels created, and a neural network trained. On 7T cardiac cine images the model pre-trained on public imaging data, acquired at 1.5T and 3T, achieved DICELV = 0.835 and DICEMY = 0.670. Transfer learning using 7T cine data and ImageNet weight initialization improved model performance to DICELV = 0.900 and DICEMY = 0.791. Using only end-systolic and end-diastolic images reduced training data by 90%, with no negative impact on segmentation performance (DICELV = 0.908, DICEMY = 0.805). CONCLUSIONS: This work demonstrates and quantifies the benefits of transfer learning for cardiac cine image segmentation. We provide practical guidelines for researchers planning transfer learning projects in cardiac MRI and make data, models, and code publicly available.


Assuntos
Aprendizado Profundo , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Redes Neurais de Computação
11.
Magn Reson Med ; 85(1): 182-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700791

RESUMO

PURPOSE: Inhomogeneities of the static magnetic B0 field are a major limiting factor in cardiac MRI at ultrahigh field (≥ 7T), as they result in signal loss and image distortions. Different magnetic susceptibilities of the myocardium and surrounding tissue in combination with cardiac motion lead to strong spatio-temporal B0 -field inhomogeneities, and their homogenization (B0 shimming) is a prerequisite. Limitations of state-of-the-art shimming are described, regional B0 variations are measured, and a methodology for spherical harmonics shimming of the B0 field within the human myocardium is proposed. METHODS: The spatial B0 -field distribution in the heart was analyzed as well as temporal B0 -field variations in the myocardium over the cardiac cycle. Different shim region-of-interest selections were compared, and hardware limitations of spherical harmonics B0 shimming were evaluated by calibration-based B0 -field modeling. The role of third-order spherical harmonics terms was analyzed as well as potential benefits from cardiac phase-specific shimming. RESULTS: The strongest B0 -field inhomogeneities were observed in localized spots within the left-ventricular and right-ventricular myocardium and varied between systolic and diastolic cardiac phases. An anatomy-driven shim region-of-interest selection allowed for improved B0 -field homogeneity compared with a standard shim region-of-interest cuboid. Third-order spherical harmonics terms were demonstrated to be beneficial for shimming of these myocardial B0 -field inhomogeneities. Initial results from the in vivo implementation of a potential shim strategy were obtained. Simulated cardiac phase-specific shimming was performed, and a shim term-by-term analysis revealed periodic variations of required currents. CONCLUSION: Challenges in state-of-the-art B0 shimming of the human heart at 7 T were described. Cardiac phase-specific shimming strategies were found to be superior to vendor-supplied shimming.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Calibragem , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
12.
BMC Med Imaging ; 21(1): 27, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588786

RESUMO

BACKGROUND: Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. RESULTS: We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. CONCLUSIONS: Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.


Assuntos
Aprendizado Profundo , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Humanos , Redes Neurais de Computação , Sensibilidade e Especificidade , Software
13.
Magn Reson Med ; 84(1): 467-483, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31828822

RESUMO

PURPOSE: Bolus-based dynamic contrast agent (CA) perfusion measurements of the heart are subject to systematic errors due to CA bolus dispersion in the coronary arteries. To better understand these effects on quantification of myocardial blood flow and myocardial perfusion reserve (MPR), an in-silico model of the coronary arteries down to the pre-arteriolar vessels has been developed. METHODS: In this work, a computational fluid dynamics analysis is performed to investigate these errors on the basis of realistic 3D models of the left and right porcine coronary artery trees, including vessels at the pre-arteriolar level. Using advanced boundary conditions, simulations of blood flow and CA transport are conducted at rest and under stress. These are evaluated with regard to dispersion (assessed by the width of CA concentration time curves and associated vascular transport functions) and errors of myocardial blood flow and myocardial perfusion reserve quantification. RESULTS: Contrast agent dispersion increases with traveled distance as well as vessel diameter, and decreases with higher flow velocities. Overall, the average myocardial blood flow errors are -28% ± 16% and -8.5% ± 3.3% at rest and stress, respectively, and the average myocardial perfusion reserve error is 26% ± 22%. The calculated values are different in the left and right coronary tree. CONCLUSION: Contrast agent dispersion is dependent on a complex interplay of several different factors characterizing the cardiovascular bed, including vessel size and integrated vascular length. Quantification errors evoked by the observed CA dispersion show nonnegligible distortion in dynamic CA bolus-based perfusion measurements. We expect future improvements of quantitative perfusion measurements to make the systematic errors described here more apparent.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Animais , Meios de Contraste , Circulação Coronária , Hidrodinâmica , Imageamento por Ressonância Magnética , Perfusão , Suínos
14.
NMR Biomed ; 33(7): e4298, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207190

RESUMO

In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10% neutral buffered formalin. T2* and T2 were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90% and 80%, while respective relative ADC values at those fixation stages were 78% and 92%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T2 , T2* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2 , T2* and SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.


Assuntos
Imagem de Difusão por Ressonância Magnética , Formaldeído/química , Coração/diagnóstico por imagem , Fixação de Tecidos , Animais , Razão Sinal-Ruído , Marcadores de Spin , Suínos
15.
J Digit Imaging ; 33(4): 1016-1025, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32314069

RESUMO

Clinical Data Warehouses (DWHs) are used to provide researchers with simplified access to pseudonymized and homogenized clinical routine data from multiple primary systems. Experience with the integration of imaging and metadata from picture archiving and communication systems (PACS), however, is rare. Our goal was therefore to analyze the viability of integrating a production PACS with a research DWH to enable DWH queries combining clinical and medical imaging metadata and to enable the DWH to display and download images ad hoc. We developed an application interface that enables to query the production PACS of a large hospital from a clinical research DWH containing pseudonymized data. We evaluated the performance of bulk extracting metadata from the PACS to the DWH and the performance of retrieving images ad hoc from the PACS for display and download within the DWH. We integrated the system into the query interface of our DWH and used it successfully in four use cases. The bulk extraction of imaging metadata required a median (quartiles) time of 0.09 (0.03-2.25) to 12.52 (4.11-37.30) seconds for a median (quartiles) number of 10 (3-29) to 103 (8-693) images per patient, depending on the extraction approach. The ad hoc image retrieval from the PACS required a median (quartiles) of 2.57 (2.57-2.79) seconds per image for the download, but 5.55 (4.91-6.06) seconds to display the first and 40.77 (38.60-41.63) seconds to display all images using the pure web-based viewer. A full integration of a production PACS with a research DWH is viable and enables various use cases in research. While the extraction of basic metadata from all images can be done with reasonable effort, the extraction of all metadata seems to be more appropriate for subgroups.


Assuntos
Data Warehousing , Sistemas de Informação em Radiologia , Diagnóstico por Imagem , Humanos
16.
Magn Reson Med ; 75(3): 985-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25884985

RESUMO

PURPOSE: Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. METHOD: The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. RESULTS: A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. CONCLUSION: Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Animais , Aorta/fisiologia , Desenho de Equipamento , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Teóricos , Imagens de Fantasmas , Água
17.
MAGMA ; 27(1): 107-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23760558

RESUMO

OBJECT: We present a pilot study based on (19)F-MRI to measure fast and slow wash-in and wash-out kinetics of volatile anesthetics in pig brain. METHOD: The periodic administration of anesthetics in pulsed mode is used to enhance the sensitivity of the anesthetic concentration detection by (19)F-MRI signal. Temporal correlation analysis allows mapping the kinetics time constants. RESULTS: The clear correlation response to anesthetics concentration changes was found in the brain region in comparison with fatty tissues. CONCLUSION: The methodology may yield important pharmacological findings on regional effect of the anesthetics in brain and be a step towards human studies.


Assuntos
Anestésicos/farmacocinética , Encéfalo/metabolismo , Flúor/química , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Processamento de Imagem Assistida por Computador , Isótopos , Oscilometria , Projetos Piloto , Suínos , Fatores de Tempo
18.
Commun Med (Lond) ; 4(1): 146, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026075

RESUMO

BACKGROUND: 7 T cardiac magnetic resonance imaging (MRI) studies may enable higher precision in clinical metrics like cardiac function, ventricular mass, and more. Higher precision may allow early detection of functional impairment and early evaluation of treatment responses in clinical practice and pre-clinical studies. METHODS: Seven female German Landrace pigs were scanned prior to and at three time points (3-4 days, 7-10 days, and ~60 days) post myocardial infarction using a whole body 7 T system and three radiofrequency (RF) coils developed and built in-house to accompany animal growth. RESULTS: The combination of dedicated RF hardware and 7 T MRI enables a longitudinal study in a pig model of acute and chronic infarction, providing consistent blood tissue contrast and high signal-to-noise ratio (SNR) in measurements of cardiac function, as well as low coefficients of variation (CoV) for ejection fraction (CoVintra-observer: 2%, CoVinter-observer: 3.8%) and infarct size (CoVintra-observer: 8.4%, CoVinter-observer: 3.8%), despite drastic animal growth. CONCLUSIONS: Best results are achieved via manual segmentation. We define state-of-the-art procedures for large animal studies at 7 T.


In magnetic resonance imaging (MRI), scanners use magnets to generate detailed images of structures in the body, such as the heart. Stronger magnets can produce stronger magnetic fields, which can be leveraged for better image quality and developing new methods for disease diagnosis. In clinical practice, such systems using strong magnets are not yet used for imaging of the heart and some safety aspects remain challenging. We apply such an imaging approach in pigs, in which heart structure and function are similar to humans. We focus on the most important clinical imaging aspects following a heart attack, namely heart function and scar detection. We demonstrate that the high magnetic strength system enabled consistent image quality and accuracy. These findings may help to guide future developments in MRI of the heart, for example in patients who have had a heart attack.

19.
Sci Rep ; 14(1): 11009, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744988

RESUMO

Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.


Assuntos
Aprendizado Profundo , Modelos Animais de Doenças , Infarto do Miocárdio , Animais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Suínos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Humanos , Coração/diagnóstico por imagem , Coração/fisiopatologia , Volume Sistólico , Imageamento por Ressonância Magnética/métodos
20.
Front Immunol ; 15: 1347835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495883

RESUMO

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Assuntos
Colecalciferol , Intestino Delgado , Camundongos , Animais , Colecalciferol/farmacologia , Camundongos Endogâmicos C57BL , Células Epiteliais , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA