Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 298(7): 102078, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643317

RESUMO

Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.


Assuntos
Nitritos , Pré-Eclâmpsia , Animais , Epigênese Genética , Feminino , Humanos , Ferro/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ovinos
2.
J Physiol ; 598(11): 2223-2241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118291

RESUMO

KEY POINTS: Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates. NOx have differential stability in placental homogenates. NO and iron nitrosyl species (FeNOs), are relatively unstable in placental homogenates from normal placentas. Exogenous NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. FeNOs were also detected endogenously in mouse and human placenta. NOx levels in placental villous tissue are increased in fetal growth restriction vs. placentas from women with normal pregnancies, particularly in fetal growth restriction associated with pre-eclampsia. Villitis was not associated, however, with an increase in NOx levels in either normotensive or pre-eclamptic placentas. The results call for further investigation of FeNOs in normal and complicated pregnancies. ABSTRACT: Nitric oxide (NO) is a gasotransmitter with important roles in pregnancy under both physiological and pathophysiological conditions. Although products of NO metabolism (NOx) also have significant bioactivity, little is known about the role of NO and NOx under conditions of aberrant placental inflammation during pregnancy. An ozone-based chemiluminescence approach was used to investigate the stability and metabolic fate of NOx in human placental homogenates from uncomplicated pregnancies in healthy mothers compared to that in placental tissue from normotensive and pre-eclamptic pregnancies complicated with fetal growth restriction (FGR) with and without villitis of unknown aetiology. We hypothesized that placental NOx would be increased in FGR vs. normal tissue, and be further increased in villitis vs. non-villitis placentas. Findings indicate that nitrate, nitrite and nitrosothiols, but not NO or iron nitrosyl species (FeNOs), are relatively stable in placental homogenates from normal placentas, and that NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. Furthermore, NOx levels in placental villous tissue are increased in FGR vs. placentas from women with normal pregnancies, particularly in FGR associated with pre-eclampsia. However, in contrast to our hypothesis, villitis was not associated with an increase in NOx levels in either normotensive or pre-eclamptic placentas. Our results also strongly support the involvement of FeNOs in both mouse and human placenta, and call for their further study as a critical mechanistic link between pre-eclampsia and fetal growth restriction.


Assuntos
Óxido Nítrico , Pré-Eclâmpsia , Animais , Feminino , Retardo do Crescimento Fetal , Humanos , Inflamação , Camundongos , Placenta , Gravidez
3.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R401-R411, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32813540

RESUMO

Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs. When fetal lambs were intubated and mechanically ventilated with 100% O2 to oxygenate the arterial blood while still in utero with the umbilical circulation still intact, there was no change in plasma NOx levels. In contrast, when the umbilical cord was ligated while fetal lambs were mechanically ventilated with O2 levels that maintained fetal arterial blood gases, plasma NOx levels decreased by nearly 50%. Characterization of the individual NOx species in plasma revealed that the overall fall in NOx at birth was attributable mainly to FeNO compounds. Finally, when the typical fall in NOx after birth was prevented by intravenous nitrite infusion, birth-related changes in blood pressure, heart rate, and carotid flow changes were little affected, suggesting the cardiovascular transition at birth is not dependent on a fall in plasma NOx. In conclusion, this study shows FeNO is released from the placenta and that its decline accounts for most of the measured fall in plasma NOx at birth.


Assuntos
Sangue Fetal/metabolismo , Ferro/sangue , Nitritos/metabolismo , Óxidos de Nitrogênio/sangue , Parto/fisiologia , Placenta/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Feminino , Óxido Nítrico/metabolismo , Gravidez , Ovinos
4.
Mol Pharmacol ; 93(5): 427-437, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476040

RESUMO

Glutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO•); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO• donor. In addition, products of the reaction of glut-BDNIC with CPTIO [2-(4-carboxyphenyl)-4,4,5-tetramethyl imidazoline-1-oxyl-3-oxide] were found to have electron paramagnetic characteristics similar to those of an HNO donor compared with an NO• donor. In contrast to S-nitroso-glutathione, which was vasodilative both in vitro and in vivo, the potency of glut-BDNIC-mediated vasodilation was markedly diminished in both rats and sheep. Wire myography showed that plasma albumin contributed to this loss of hypotensive effects, an effect abolished by modification of the cysteine-thiol residue of albumin. High doses of glut-BDNIC caused long-lasting hypotension in rats that can be at least partially attributed to its long circulating half-life of ∼44 minutes. This study suggests that glut-BDNIC is an HNO donor, and that its vasoactive effects are modulated by binding to the cysteine residue of plasma proteins, such as albumin.


Assuntos
Glutationa/metabolismo , Hemodinâmica/efeitos dos fármacos , Ferro/metabolismo , Ferro/farmacologia , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/farmacologia , Albumina Sérica/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Ferro/farmacocinética , Ligantes , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Miografia , Doadores de Óxido Nítrico/farmacologia , Óxidos de Nitrogênio/farmacocinética , Ratos , Ovinos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
5.
Nitric Oxide ; 75: 60-69, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428841

RESUMO

Nitrite and S-nitrosothiols (SNOs) are both byproducts of nitric oxide (NO) metabolism and are proposed to cause vasodilation via activation of soluble guanylate cyclase (sGC). We have previously reported that while SNOs are potent vasodilators at physiological concentrations, nitrite itself only produces vasodilation at supraphysiological concentrations. Here, we tested the hypothesis that sub-vasoactive concentrations of nitrite potentiate the vasodilatory effects of SNOs. Multiple exposures of isolated sheep arteries to S-nitroso-glutathione (GSNO) resulted in a tachyphylactic decreased vasodilatory response to GSNO but not to NO, suggesting attenuation of signaling steps upstream from sGC. Exposure of arteries to 1 µM nitrite potentiated the vasodilatory effects of GSNO in naive arteries and abrogated the tachyphylactic response to GSNO in pre-exposed arteries, suggesting that nitrite facilitates GSNO-mediated activation of sGC. In intact anesthetized sheep and rats, inhibition of NO synthases to decrease plasma nitrite levels attenuated vasodilatory responses to exogenous infusions of GSNO, an effect that was reversed by exogenous infusion of nitrite at sub-vasodilating levels. This study suggests nitrite potentiates SNO-mediated vasodilation via a mechanism that lies upstream from activation of sGC.


Assuntos
Óxido Nítrico/metabolismo , Nitritos/metabolismo , S-Nitrosotióis/metabolismo , Vasodilatadores/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/fisiologia , GMP Cíclico/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/farmacologia , Nitritos/farmacologia , Ratos , S-Nitrosoglutationa/metabolismo , S-Nitrosoglutationa/farmacologia , S-Nitrosotióis/farmacologia , Ovinos , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
6.
Nitric Oxide ; 55-56: 70-81, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27021272

RESUMO

Nitric oxide (NO) and O2 are both three-to four-fold more soluble in biological lipids than in aqueous solutions. Their higher concentration within plasma lipids accelerates NO autoxidation to an extent that may be of importance to overall NO bioactivity. This study was undertaken to test the hypothesis that increased plasma lipids after a high-fat meal appreciably accelerate NO metabolism and alter the byproducts formed. We found that plasma collected from subjects after consumption of a single high-fat meal had a higher capacity for NO consumption and consumed NO more rapidly compared to fasting plasma. This increased NO consumption showed a direct correlation with plasma triglyceride concentrations (p = 0.006). The accelerated NO consumption in postprandial plasma was reversed by removal of the lipids from the plasma, was mimicked by the addition of hydrophobic micelles to aqueous buffer, and could not be explained by the presence of either free hemoglobin or ceruloplasmin. The products of NO consumption were shifted in postprandial plasma, with 55% more nitrite (n = 12, p = 0.002) but 50% less SNO (n = 12, p = 0.03) production compared to matched fasted plasma. Modeling calculations indicated that NO autoxidation was accelerated by about 48-fold in the presence of plasma lipids. We conclude that postprandial triglyceride-rich lipoproteins exert a significant influence on NO metabolism in plasma.


Assuntos
Óxido Nítrico/sangue , Período Pós-Prandial , Triglicerídeos/sangue , Adulto , Idoso , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Nitritos/sangue , Oxirredução , S-Nitrosotióis/sangue , Ovinos
7.
Nitric Oxide ; 58: 20-7, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27235767

RESUMO

S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway.


Assuntos
Canais de Cálcio Tipo L/fisiologia , GMP Cíclico/fisiologia , Cisteína/análogos & derivados , Artéria Femoral/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , S-Nitrosotióis/farmacologia , Vasodilatadores/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cisteína/farmacologia , Diltiazem/farmacologia , Feminino , Artéria Femoral/fisiologia , Feto/irrigação sanguínea , Indazóis/farmacologia , Masculino , Artérias Mesentéricas/fisiologia , Nifedipino/farmacologia , Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , S-Nitrosoglutationa/farmacologia , Ovinos , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/efeitos dos fármacos
8.
Am J Physiol Heart Circ Physiol ; 307(7): H976-86, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108012

RESUMO

Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin.


Assuntos
Músculo Liso Vascular/fisiologia , Nitritos/sangue , Vasodilatação , Animais , Citoglobina , Feminino , Artéria Femoral/citologia , Artéria Femoral/metabolismo , Artéria Femoral/fisiologia , Globinas/metabolismo , Membro Posterior/irrigação sanguínea , Hipóxia/sangue , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxigênio/sangue , Ratos , Fluxo Sanguíneo Regional , Ovinos
9.
Adv Sci (Weinh) ; 11(26): e2305866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685626

RESUMO

Although the gasotransmitter hydrogen sulfide (H2S) is well known for its vasodilatory effects, H2S also exhibits vasoconstricting properties. Herein, it is demonstrated that administration of H2S as intravenous sodium sulfide (Na2S) increased blood pressure in sheep and rats, and this effect persisted after H2S has disappeared from the blood. Inhibition of the L-type calcium channel (LTCC) diminished the hypertensive effects. Incubation of Na2S with whole blood, red blood cells, methemoglobin, or oxyhemoglobin produced a hypertensive product of H2S, which is not hydrogen thioperoxide, metHb-SH- complexes, per-/poly- sulfides, or thiolsulfate, but rather a labile intermediate. One-electron oxidation of H2S by oxyhemoglobin generated its redox cousin, sulfhydryl radical (HS•). Consistent with the role of HS• as the hypertensive intermediate, scavenging HS• inhibited Na2S-induced vasoconstriction and activation of LTCCs. In conclusion, H2S causes vasoconstriction that is dependent on the activation of LTCCs and generation of HS• by oxyhemoglobin.


Assuntos
Pressão Sanguínea , Canais de Cálcio Tipo L , Sulfeto de Hidrogênio , Oxiemoglobinas , Animais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oxiemoglobinas/metabolismo , Oxiemoglobinas/farmacologia , Ratos , Canais de Cálcio Tipo L/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Ovinos , Masculino , Hipertensão/metabolismo , Modelos Animais de Doenças , Sulfetos/farmacologia , Sulfetos/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 305(11): R1401-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089378

RESUMO

Nitric oxide (NO) is metabolized in plasma, in part by the ferroxidase ceruloplasmin (Cp), to form nitrite and nitrosothiols (SNOs), which are proposed to mediate protective responses to hypoxia and ischemia. We hypothesized that NO metabolism would be attenuated in fetal plasma due to low Cp activity. We measured Cp concentrations and activity in plasma samples collected from adults and fetuses of humans and sheep. We then added NO ([NO]: 1.5 or 100 µM) to plasma and aqueous buffer and measured rates of NO disappearance and the production of nitrite and SNO. Cp concentrations in fetal plasma were <15% of adult levels. In aqueous buffer, 1.5 µM NO disappeared with a half-life of 347 ± 64 s (means ± SE) but in plasma of humans the half-life was 19 ± 2 s (adult) and 11 ± 1 s (fetus, P = 0.004) and in sheep it was 31 ± 3 s (adult) and 43 ± 5 s (fetus, P = 0.04). Cp activity was not correlated with the overall elimination half-life of NO or with the amount of SNO ([NO]: 100 µM) or nitrite ([NO]: 1.5 or 100 µM) produced but correlated with SNO yields at 1.5 µM [NO] (r = 0.92, P = 0.04). Our data demonstrate that Cp is not essential to the increased rate of metabolism of NO in plasma relative to aqueous buffers and that it is not essential to the production of nitrite from NO. Cp may be involved in the conversion of NO to SNO in plasma under near-physiological concentrations of NO.


Assuntos
Ceruloplasmina/metabolismo , Óxido Nítrico/metabolismo , S-Nitrosotióis/metabolismo , Adulto , Envelhecimento , Animais , Feto , Meia-Vida , Humanos , Oxirredução , Ovinos
11.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759975

RESUMO

We recently developed a combination of four chemiluminescence-based assays for selective detection of different nitric oxide (NO) metabolites, including nitrite, S-nitrosothiols (SNOs), heme-nitrosyl (heme-NO), and dinitrosyl iron complexes (DNICs). However, these NO species (NOx) may be under dynamic equilibria during sample handling, which affects the final determination made from the readout of assays. Using fetal and maternal sheep from low and high altitudes (300 and 3801 m, respectively) as models of different NOx levels and compositions, we tested the hypothesis that sample handling introduces artifacts in chemiluminescence assays of NOx. Here, we demonstrate the following: (1) room temperature placement is associated with an increase and decrease in NOx in plasma and whole blood samples, respectively; (2) snap freezing and thawing lead to the interconversion of different NOx in plasma; (3) snap freezing and homogenization in liquid nitrogen eliminate a significant fraction of NOx in the aorta of stressed animals; (4) A "stop solution" commonly used to preserve nitrite and SNOs leads to the interconversion of different NOx in blood, while deproteinization results in a significant increase in detectable NOx; (5) some reagents widely used in sample pretreatments, such as mercury chloride, acid sulfanilamide, N-ethylmaleimide, ferricyanide, and anticoagulant ethylenediaminetetraacetic acid, have unintended effects that destabilize SNO, DNICs, and/or heme-NO; (6) blood, including the residual blood clot left in the washed purge vessel, quenches the signal of nitrite when using ascorbic acid and acetic acid as the purge vessel reagent; and (7) new limitations to the four chemiluminescence-based assays. This study points out the need for re-evaluation of previous chemiluminescence measurements of NOx, and calls for special attention to be paid to sample handling, as it can introduce significant artifacts into NOx assays.

12.
Circulation ; 123(6): 605-12, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282501

RESUMO

BACKGROUND: Nitrite can be converted to nitric oxide (NO) by a number of different biochemical pathways. In newborn lambs, an aerosol of inhaled nitrite has been found to reduce pulmonary blood pressure, possibly acting via conversion to NO by reaction with intraerythrocytic deoxyhemoglobin. If so, the vasodilating effects of nitrite would be attenuated by free hemoglobin in plasma that would rapidly scavenge NO. METHODS AND RESULTS: Pulmonary vascular pressures and resistances to flow were measured in anesthetized newborn lambs. Plasma hemoglobin concentrations were then elevated, resulting in marked pulmonary hypertension. This effect was attenuated if infused hemoglobin was first oxidized to methemoglobin, which does not scavenge NO. These results further implicate NO as a tonic pulmonary vasodilator. Next, while free hemoglobin continued to be infused, the lambs were given inhaled NO gas (20 ppm), inhaled sodium nitrite aerosol (0.87 mol/L), or an intravascular nitrite infusion (3 mg/h bolus, 5 mg · kg⁻¹ · h⁻¹ infusion). Inhaled NO and inhaled nitrite aerosol both resulted in pulmonary vasodilation. Intravascular infusion of nitrite, however, did not. Increases in exhaled NO gas were observed in lambs while breathing the nitrite aerosol (≈ 20 ppb NO) but not during intravascular infusion of nitrite. CONCLUSIONS: We conclude that the pulmonary vasodilating effect of inhaled nitrite results from its conversion to NO in airway and parenchymal lung tissue and is not dependent on reactions with deoxyhemoglobin in the pulmonary circulation. Inhaled nitrite aerosol remains a promising candidate to reduce pulmonary hypertension in clinical application.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/metabolismo , Nitritos/administração & dosagem , Nitritos/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia , Administração por Inalação , Animais , Animais Recém-Nascidos , Hemoglobinas/metabolismo , Hemólise , Pulmão/irrigação sanguínea , Circulação Pulmonar/efeitos dos fármacos , Ovinos , Vasodilatadores/metabolismo
13.
Redox Biol ; 53: 102327, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605454

RESUMO

S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as 'nitrodilators', defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.


Assuntos
Óxido Nítrico , S-Nitrosotióis , Guanilato Ciclase , Músculo Liso Vascular , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , S-Nitrosotióis/farmacologia , Guanilil Ciclase Solúvel , Vasodilatação
14.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139895

RESUMO

The mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric oxide metabolites (NOx) in gestation. To test for this, electron paramagnetic resonance was used to provide unique measurements of iron, metalloproteins, and free radicals in the blood and aorta of fetal and maternal sheep from either high or low altitudes (3801 or 300 m). Using ozone-based chemiluminescence with selectivity for various NOx species, we determined the NOx levels in these samples immediately after collection. These experiments demonstrated a systemic redistribution of iron in high altitude fetuses as manifested by a decrease in both chelatable and total iron in the aorta and an increase in non-transferrin bound iron and total iron in plasma. Likewise, high altitude altered the redox status diversely in fetal blood and aorta. This study also found significant increases in blood and aortic tissue NOx in fetuses and mothers at high altitude. In addition, gradients in NOx concentrations observed between fetus and mother, umbilical artery and vein, and plasma and RBCs demonstrated complex dynamic homeostasis of NOx among these circulatory compartments, such as placental generation and efflux as well as fetal consumption of iron-nitrosyls in RBCs, probably HbNO. In conclusion, these results may suggest the utilization of iron from non-hematopoietic tissues iron for erythropoiesis in the fetus and increased NO bioavailability in response to chronic hypoxic stress at high altitude during gestation.

15.
Pediatr Res ; 68(3): 193-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20531255

RESUMO

Tracheal instillation of surfactant to premature newborns improves their survivability but may transiently obstruct airways resulting in undesirable acute effects on cerebral blood flow (CBF) and oxygenation. The acute peridosing hemodynamic effects of surfactant administration may be avoided by minimizing the volume of surfactant administered, but smaller surfactant volumes may also result in less even distribution of surfactant throughout the lung. These experiments were undertaken to compare responses to two surfactants with different dose volumes (porcine-derived poractant alfa, 2.5 mL/kg vs peptide-based synthetic lucinactant, 5.8 mL/kg) given to newly delivered lambs at 85% gestation. Both surfactants resulted in similar improvements in blood gas values, a doubling of dynamic compliance, increases in brain tissue oxygen tension, and stable blood pressure with no significant change in CBF. Distribution of surfactant throughout the lungs was more uniform with lucinactant than poractant alfa when assessed by labeled microspheres. We conclude that improvements in lung mechanics, gas exchange, and changes in CBF are comparable for a porcine-derived and peptide-containing synthetic surfactant, despite instilled volumes differing by 2-fold. Intrapulmonary distribution of surfactant is more uniform after a larger volume is instilled.


Assuntos
Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Álcoois Graxos/farmacologia , Fosfatidilgliceróis/farmacologia , Fosfolipídeos/farmacologia , Proteínas/farmacologia , Surfactantes Pulmonares/farmacologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Análise de Variância , Animais , Produtos Biológicos/uso terapêutico , Gasometria , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Álcoois Graxos/uso terapêutico , Humanos , Recém-Nascido , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Microesferas , Oxigênio/metabolismo , Fosfatidilgliceróis/uso terapêutico , Fosfolipídeos/uso terapêutico , Proteínas/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Ovinos
16.
Free Radic Biol Med ; 160: 458-470, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32828952

RESUMO

Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.


Assuntos
Desferroxamina , Quelantes de Ferro , Animais , Ferricianetos , Óxido Nítrico , Ovinos , Raios Ultravioleta
17.
Placenta ; 38: 67-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26907384

RESUMO

INTRODUCTION: Nitrite conveys NO-bioactivity that may contribute to the high-flow, low-resistance character of the fetal circulation. Fetal blood nitrite concentrations depend partly on placental permeability which has not been determined experimentally. We aimed to extract the placental permeability-surface (PS) product for nitrite in sheep from a computational model. METHODS: An eight-compartment computational model of the fetal-maternal unit was constructed (Matlab(®) (R2013b (8.2.0.701), MathWorks Inc., Natick, MA). Taking into account fetal and maternal body weights, four variables (PS, the rate of nitrite metabolism within red cells, and two nitrite distribution volumes, one with and one without nitrite metabolism), were varied to obtain optimal fits to the experimental plasma nitrite profiles observed following the infusion of nitrite into either the fetus (n = 7) or the ewe (n = 8). RESULTS: The model was able to replicate the average and individual nitrite-time profiles (r(2) > 0.93) following both fetal and maternal nitrite infusions with reasonable variation of the four fitting parameters. Simulated transplacental nitrite fluxes were able to predict umbilical arterial-venous nitrite concentration differences that agreed with experimental values. The predicted PS values for a 3 kg sheep fetus were 0.024 ± 0.005 l∙min(-1) in the fetal-maternal direction and 0.025 ± 0.003 l∙min(-1) in the maternal-fetal direction (mean ± SEM). These values are many-fold higher than the reported PS product for chloride anions across the sheep placenta. CONCLUSION: The result suggests a transfer of nitrite across the sheep placenta that is not exclusively by simple diffusion through water-filled channels.


Assuntos
Troca Materno-Fetal/fisiologia , Nitritos/metabolismo , Placenta/metabolismo , Animais , Simulação por Computador , Feminino , Cinética , Modelos Biológicos , Nitritos/farmacocinética , Permeabilidade , Gravidez , Ovinos
18.
Free Radic Biol Med ; 91: 215-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26686469

RESUMO

S-nitrosothiols (SNOs) such as S-nitroso-L-cysteine (L-cysNO) are endogenous compounds with potent vasodilatory activity. During circulation in the blood, the NO moiety can be exchanged among various thiol-containing compounds by S-transnitrosylation, resulting in SNOs with differing capacities to enter the cell (membrane permeability). To determine whether the vasodilating potency of SNOs is dependent upon membrane permeability, membrane-permeable L-cysNO and impermeable S-nitroso-D-cysteine (D-cysNO) and S-nitroso-glutathione (GSNO) were infused into one femoral artery of anesthetized adult sheep while measuring bilateral femoral and systemic vascular conductances. L-cysNO induced vasodilation in the infused hind limb, whereas D-cysNO and GSNO did not. L-cysNO also increased intracellular NO in isolated arterial smooth muscle cells, whereas GSNO did not. The infused SNOs remained predominantly in a low molecular weight form during first-passage through the hind limb vasculature, but were converted into high molecular weight SNOs upon systemic recirculation. At systemic concentrations of ~0.6 µmol/L, all three SNOs reduced mean arterial blood pressure by ~50%, with pronounced vasodilation in the mesenteric bed. Pharmacokinetics of L-cysNO and GSNO were measured in vitro and in vivo and correlated with their hemodynamic effects, membrane permeability, and S-transnitrosylation. These results suggest local vasodilation by SNOs in the hind limb requires membrane permeation, whereas systemic vasodilation does not. The systemic hemodynamic effects of SNOs occur after equilibration of the NO moiety amongst the plasma thiols via S-transnitrosylation.


Assuntos
Cisteína/análogos & derivados , S-Nitrosotióis/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Células Cultivadas , Cisteína/farmacologia , Cisteína/fisiologia , Avaliação Pré-Clínica de Medicamentos , Peso Molecular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Ovinos
19.
Radiology ; 230(2): 353-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14699185

RESUMO

PURPOSE: To assess the accuracy of magnetic resonance (MR) imaging in determining fetal lung volume (FLV) and to observe fetal lung development with B-mode ultrasonography (US) and MR imaging. MATERIALS AND METHODS: Seven sheep fetuses between 92 and 141 gestational days (term, 145 days) with and without tracheal occlusion (controls) underwent serial MR imaging and US. FLV at MR imaging was measured with true fast imaging with steady-state precession in coronal and transverse planes. The combined cross-sectional left- and right-lung area was measured with US at three transverse levels. FLV was measured at autopsy. Statistical evaluations included linear regression analysis and calculation of the mean and 95% CI. RESULTS: No differences in FLV were observed on coronal or transverse MR images (r2 = 0.98; slope = 0.91; 95% CI: 0.82, 1.01). FLV at MR imaging at termination of the experiment was significantly related to FLV at autopsy (r2 = 0.96; slope = 1.27; 95% CI: 0.97, 1.57; n = 6). FLV at MR imaging increased more rapidly with gestational age in fetuses with tracheal occlusion (21.0 mL/d; 95% CI: 10.7, 31.3) than in controls (4.7 mL/d; 95% CI: 1.7, 7.7). Increase in left- and right-lung area at US was accelerated in fetuses with tracheal occlusion (1.60 cm2/d; 95% CI: 1.3, 1.9) compared with controls (0.38 cm2/d; 95% CI: 0.23, 0.53). Left- and right-lung area at US and FLV at MR imaging were significantly correlated (r2 = 0.82). CONCLUSION: FLV can be measured with moderate accuracy at MR imaging on both coronal and transverse images. MR imaging and B-mode US are useful tools for monitoring and quantifying tracheal occlusion-stimulated fetal lung growth in sheep fetuses.


Assuntos
Maturidade dos Órgãos Fetais/fisiologia , Hérnias Diafragmáticas Congênitas , Medidas de Volume Pulmonar , Pulmão/embriologia , Imageamento por Ressonância Magnética , Ultrassonografia Pré-Natal , Animais , Modelos Animais de Doenças , Feminino , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/terapia , Ligadura , Pulmão/patologia , Gravidez , Sensibilidade e Especificidade , Ovinos , Traqueia/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA