RESUMO
The phase problem is a well known ill-posed reconstruction problem of coherent lens-less microscopic imaging, where only the squared magnitude of a complex wavefront is measured by a detector while the phase information of the wave field is lost. To retrieve the lost information, common algorithms rely either on multiple data acquisitions under varying measurement conditions or on the application of strong constraints such as a spatial support. In X-ray near-field holography, however, these methods are rendered impractical in the setting of time sensitive in situ and operando measurements. In this paper, we will forego the spatial support constraint and propose a projected gradient descent (PGD) based reconstruction scheme in combination with proper preprocessing and regularization that significantly reduces artifacts for refractive reconstructions from only a single acquired hologram without a spatial support constraint. We demonstrate the feasibility and robustness of our approach on different data sets obtained at the nano imaging endstation of P05 at PETRA III (DESY, Hamburg) operated by Helmholtz-Zentrum Hereon.
RESUMO
We demonstrate live-updating ptychographic reconstruction with the extended ptychographical iterative engine, an iterative ptychography method, during ongoing data acquisition. The reconstruction starts with a small subset of the total data, and as the acquisition proceeds the data used for reconstruction are extended. This creates a live-updating view of object and illumination that allows monitoring the ongoing experiment and adjusting parameters with quick turn around. This is particularly advantageous for long-running acquisitions. We show that such a gradual reconstruction yields interpretable results already with a small subset of the data. We show simulated live processing with various scan patterns, parallelized reconstruction, and real-world live processing at the hard X-ray ptychographic nanoanalytical microscope PtyNAMi at the PETRA III beamline.
RESUMO
Diffraction-limited hard X-ray optics are key components for high-resolution microscopy, in particular for upcoming synchrotron radiation sources with ultra-low emittance. Diffractive optics like multilayer Laue lenses (MLL) have the potential to reach unprecedented numerical apertures (NA) when used in a crossed geometry of two one-dimensionally focusing lenses. However, minuscule fluctuations in the manufacturing process and technical limitations for high NA X-ray lenses can prevent a diffraction-limited performance. We present a method to overcome these challenges with a tailor-made refractive phase plate. With at-wavelength metrology and a rapid prototyping approach we demonstrate aberration correction for a crossed pair of MLL, improving the Strehl ratio from 0.41(2) to 0.81(4) at a numerical aperture of 3.3 × 10-3. This highly adaptable aberration-correction scheme provides an important tool for diffraction-limited hard X-ray focusing.
RESUMO
A correction in the paper by Seiboth et al. [(2018). J. Synchrotron Rad. 25, 108-115] is made.
RESUMO
Many processes and materials in heterogeneous catalysis undergo dynamic structural changes depending on their chemical environment. Monitoring such dynamic changes can be challenging using conventional spectroscopic characterization tools, due to the high time resolution required. Here, a high-resolution 2D X-ray camera operating at 50â Hz full-frame rate was synchronized with a QEXAFS monochromator, enabling rapid spectro-microscopic imaging with chemical contrast over individual pixels. This was used to monitor chemical gradients within a model Pt/Al2O3 catalyst during catalytic partial oxidation of methane to synthesis gas. The transition from methane combustion (partly oxidized Pt) to combustion-reforming and partial oxidation (fully reduced Pt) was observed by a characteristic reduction front, which progressed from the end of the catalyst bed towards its beginning on the second time scale. The full-field QEXAFS imaging method applied here allows acquisition of entire XANES spectra `on the fly' in a rapid and spatially resolved manner. The combination of high spatial and temporal resolution with spectroscopic data offers new opportunities for observing dynamic processes in catalysts and other functional materials at work. The methodology is flexible and can be applied at beamlines equipped with a QEXAFS or other fast-scanning monochromators and a suitable sample environment for gas phase analytics to allow for catalytic studies at the same time.
RESUMO
X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.
RESUMO
We report on the manufacturing and testing of the first nanofocusing refractive lenses made of single-crystal silicon carbide. We introduce the fabrication process based on lithography, followed by deep isotropic etching. The lenses were characterized at the energy of 12 keV at the beamline P06 of the synchrotron radiation source PETRA III. A focal spot of 186 nm×275 nm has been achieved with a lens working distance of 29 mm.
RESUMO
This paper presents a deep learning algorithm for tomographic reconstruction (GANrec). The algorithm uses a generative adversarial network (GAN) to solve the inverse of the Radon transform directly. It works for independent sinograms without additional training steps. The GAN has been developed to fit the input sinogram with the model sinogram generated from the predicted reconstruction. Good quality reconstructions can be obtained during the minimization of the fitting errors. The reconstruction is a self-training procedure based on the physics model, instead of on training data. The algorithm showed significant improvements in the reconstruction accuracy, especially for missing-wedge tomography acquired at less than 180° rotational range. It was also validated by reconstructing a missing-wedge X-ray ptychographic tomography (PXCT) data set of a macroporous zeolite particle, for which only 51 projections over 70° could be collected. The GANrec recovered the 3D pore structure with reasonable quality for further analysis. This reconstruction concept can work universally for most of the ill-posed inverse problems if the forward model is well defined, such as phase retrieval of in-line phase-contrast imaging.
RESUMO
Modern subtractive and additive manufacturing techniques present new avenues for X-ray optics with complex shapes and patterns. Refractive phase plates acting as glasses for X-ray optics have been fabricated, and spherical aberration in refractive X-ray lenses made from beryllium has been successfully corrected. A diamond phase plate made by femtosecond laser ablation was found to improve the Strehl ratio of a lens stack with a numerical aperture (NA) of 0.88 × 10-3 at 8.2â keV from 0.1 to 0.7. A polymer phase plate made by additive printing achieved an increase in the Strehl ratio of a lens stack at 35â keV with NA of 0.18 × 10-3 from 0.15 to 0.89, demonstrating diffraction-limited nanofocusing at high X-ray energies.
RESUMO
The manufacturing steps and first tests of a refractive lens made of polycrystalline diamond are described. A fabrication process based on electron-beam lithography and deep reactive ion etching is introduced. Experimental tests on beamline ID13 at the ESRF have been performed. A spot size of 360â nm (FWHM) at an energy E = 24.3â keV is observed.
RESUMO
Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23â nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100â kPa and temperatures of up to 1573â K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923â K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.
Assuntos
Catálise , Ciência dos Materiais/instrumentação , Microscopia Eletrônica , Elétrons , Desenho de Equipamento , Ouro/química , Síncrotrons , Temperatura , Raios X , Zeolitas/químicaRESUMO
The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events, such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.
RESUMO
In this Letter, we report on the creation of hard x-ray beams carrying orbital angular momentum of topological charge -â and -3â at a photon energy of 8.2 keV via spiral phase plates made out of fused silica by ultrashort-pulsed laser ablation. The phase plates feature a smooth phase ramp with a 0.5 µm nominal step height and a surface roughness of 0.5 µm. The measured vortex beams show submicrometer-sized donut rings and agree well with numerical modeling. Fused silica phase plates are potentially suited to manipulate the electromagnetic field in highly intense x-ray beams at x-ray free-electron laser sources.
RESUMO
The successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon-to-titanium ratio of the macroporous TS-1 samples was successfully tuned from 100 to 44. The hierarchically structured TS-1 exhibited high activity in the liquid phase epoxidation of 2-octene with hydrogen peroxide. The hierarchically structured TS-1 surpassed a conventional nano-sized TS-1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions.
RESUMO
Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with \bar{\sigma} = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without prior lens characterization but simply based on the derived lens deformation. The performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.
RESUMO
The PETRA IV project aims at upgrading the present synchrotron radiation source PETRAâ III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10â keV, PETRAâ IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology. The science case is reviewed and the current state of the conceptual design is summarized, discussing a reference lattice, a hybrid multi-bend achromat with an interleaved sextupole configuration based on the ESRF-EBS design, in more detail as well as alternative lattice concepts.
RESUMO
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
RESUMO
A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.
Assuntos
Temperatura Alta , Pressão Hidrostática , Microscopia/instrumentação , Microscopia/métodos , Difração de Raios X/instrumentação , Difração de Raios X/métodosRESUMO
X-ray scanning microscopy relies on intensive nanobeams generated by imaging a highly brilliant synchrotron radiation source onto the sample with a nanofocusing X-ray optic. Here, using a Gaussian model for the central cone of an undulator source, the nanobeam generated by refractive X-ray lenses is modeled in terms of size, flux and coherence. The beam properties are expressed in terms of the emittances of the storage ring and the lateral sizes of the electron beam. Optimal source parameters are calculated to obtain efficient and diffraction-limited nanofocusing. With decreasing emittance, the usable fraction of the beam for diffraction-limited nanofocusing experiments can be increased by more than two orders of magnitude compared with modern storage ring sources. For a diffraction-limited storage ring, nearly the whole beam can be focused, making these sources highly attractive for X-ray scanning microscopy.
RESUMO
Two different multilayer Laue lens designs were made with total deposition thicknesses of 48â µm and 53â µm, and focal lengths of 20.0â mm and 12.5â mm at 20.0â keV, respectively. From these two multilayer systems, several lenses were manufactured for one- and two-dimensional focusing. The latter is realised with a directly bonded assembly of two crossed lenses, that reduces the distance between the lenses in the beam direction to 30â µm and eliminates the necessity of producing different multilayer systems. Characterization of lens fabrication was performed using a laboratory X-ray microscope. Focusing properties have been investigated using ptychography.