Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 47(3): 265-80, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11948781

RESUMO

Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.


Assuntos
Proteínas de Bactérias , Modelos Teóricos , Canais de Potássio/fisiologia , Simulação por Computador , Condutividade Elétrica , Transporte de Íons , Modelos Moleculares , Canais de Potássio/química , Eletricidade Estática
2.
Proteins ; 44(4): 400-17, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11484218

RESUMO

Implicit models for evaluation of electrostatic energies in proteins include dielectric constants that represent effect of the protein environment. Unfortunately, the results obtained by such models are very sensitive to the value used for the dielectric constant. Furthermore, the factors that determine the optimal value of these constants are far from being obvious. This review considers the meaning of the protein dielectric constants and the ways to determine their optimal values. It is pointed out that typical benchmarks for validation of electrostatic models cannot discriminate between consistent and inconsistent models. In particular, the observed pK(a) values of surface groups can be reproduced correctly by models with entirely incorrect physical features. Thus, we introduce a discriminative benchmark that only includes residues whose pK(a) values are shifted significantly from their values in water. We also use the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) formulation to generate a series of models that move gradually from microscopic to fully macroscopic models. These include the linear response version of the PDLD/S models, Poisson Boltzmann (PB)-type models, and Tanford Kirkwwod (TK)-type models. Using our different models and the discriminative benchmark, we show that the protein dielectric constant, epsilon(p), is not a universal constant but simply a parameter that depends on the model used. It is also shown in agreement with our previous works that epsilon(p) represents the factors that are not considered explicitly. The use of a discriminative benchmark appears to help not only in identifying nonphysical models but also in analyzing effects that are not reproduced in an accurate way by consistent models. These include the effect of water penetration and the effect of the protein reorganization. Finally, we show that the optimal dielectric constant for self-energies is not the optimal constant for charge-charge interactions.


Assuntos
Proteínas/química , Íons/química , Íons/metabolismo , Modelos Químicos , Reprodutibilidade dos Testes , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA