Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 143(7): 1087-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893342

RESUMO

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Neurogênese/genética , Retina/embriologia , Tretinoína/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/genética , Proliferação de Células , Embrião não Mamífero/embriologia , Neurogênese/fisiologia , Transdução de Sinais/genética , Células-Tronco/citologia
2.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186760

RESUMO

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Assuntos
Proteínas 14-3-3/metabolismo , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas 14-3-3/genética , Actinas/metabolismo , Animais , Cateninas/metabolismo , Movimento Celular , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ligação Proteica
3.
J Biol Chem ; 289(16): 11194-11205, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24627491

RESUMO

Epithelial-mesenchymal transition (EMT) is required for the specification of tissues during embryonic development and is recapitulated during the metastatic progression of tumors. The miR-200 family plays a critical role in enforcing the epithelial state with their expression lost in cells undergoing EMT. EMT can be mediated by activation of the ZEB1 and ZEB2 (ZEB) transcription factors, which repress miR-200 expression via a self-reinforcing double negative feedback loop to promote the mesenchymal state. However, it remains unclear what factors drive and maintain epithelial-specific expression of miR-200 in the absence of EMT-inducing factors. Here, we show that the transcription factor Specificity Protein 1 (Sp1) binds to the miR-200b∼200a∼429 proximal promoter and activates miR-200 expression in epithelial cells. In mesenchymal cells, Sp1 expression is maintained, but its ability to activate the miR-200 promoter is perturbed by ZEB-mediated repression. Reduction of Sp1 expression caused changes in EMT-associated markers in epithelial cells. Furthermore, we observed co-expression of Sp1 and miR-200 during mouse embryonic development wherein miR-200 expression was only lost in regions with high ZEB expression. Together, these findings indicate that miR-200 family members require Sp1 to drive basal expression and to maintain an epithelial state.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/biossíntese , Elementos de Resposta/fisiologia , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Células Madin Darby de Rim Canino , Camundongos , MicroRNAs/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Fator de Transcrição Sp1/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
4.
Int J Biochem Cell Biol ; 36(2): 281-95, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14643893

RESUMO

The initial step of the heme biosynthetic pathway in erythroid cells is catalyzed by an erythroid-specific isoform of 5-aminolevulinate synthase-2 (ALAS2). Previously, an alternatively spliced mRNA isoform of ALAS2 was identified although the functional significance of the encoded protein was unknown. We sought to characterize the contribution of this ALAS2 isoform to overall erythroid heme biosynthesis. Here, we report the identification of three novel ALAS2 mRNA splice isoforms in addition to the previously described isoform lacking exon 4-derived sequence. Quantitation of these mRNAs using ribonuclease protection experiments revealed that the isoform without exon 4-derived sequence represents approximately 35-45% of total ALAS2 mRNA while the newly identified transcripts together represent approximately 15%. Despite the significant amounts of these three new transcripts, their features indicate that they are unlikely to substantially contribute to overall mitochondrial ALAS2 activity. In contrast, in vitro studies show that the major splice variant (lacking exon 4-encoded sequence) produces a functional enzyme, albeit with slightly reduced activity and with affinity for the ATP-specific, beta subunit of succinyl CoA synthase, comparable to that of mature ALAS2. It was also established that the first 49 amino acids of the ALAS2 pre-protein are necessary and sufficient for translocation across the mitochondrial inner membrane and that this process is not affected by the absence of exon 4-encoded sequence. We conclude that the major splice isoform of ALAS2 is functional in vivo and could significantly contribute to erythroid heme biosynthesis and hemoglobin formation.


Assuntos
5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Eritrócitos/metabolismo , Heme/biossíntese , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Catálise , Códon , Eletroforese em Gel de Poliacrilamida , Éxons , Vetores Genéticos , Proteínas de Fluorescência Verde , Hemoglobinas/química , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Reticulócitos/metabolismo , Ribonucleases/metabolismo , Frações Subcelulares/metabolismo , Succinato-CoA Ligases/química , Técnicas do Sistema de Duplo-Híbrido
5.
Exp Cell Res ; 314(1): 131-42, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17915216

RESUMO

The complex mechanisms by which transforming growth factor beta (TGFbeta) regulate re-epithelialisation following injury of stratified epithelia are not fully understood. TGFbeta signals via binding to distinct receptors activating downstream effectors, including Smads which initiate transcription of target genes. However, studies have shown that TGFbeta can also signal independently of Smads through MAPK pathways, demonstrating the diversity of TGFbeta signalling. Connective tissue growth factor (CTGF) is strongly induced by and acts downstream of TGFbeta causing pathophysiology in tissues by inducing matrix deposition, conversion of fibroblasts into contractile myofibroblasts (e.g. dermis and corneal stroma) and stimulation of epithelial-to-mesenchymal transition (e.g. kidney and lung) all of which are known to cause fibrosis. However, a role for CTGF in epithelial cell function which does not involve direct contribution to fibrosis has not been demonstrated. We show for the first time that synthesis of CTGF in cultures of human corneal epithelial cells is induced by TGFbeta through the Ras/MEK/ERK MAPK signalling pathway and that this is required for re-epithelialisation to occur through cell migration. These data reveal a novel function for CTGF in the regulation of epithelial tissue repair beyond its established role in fibrosis, and further highlight the complexity of TGFbeta regulation of epithelial cell function.


Assuntos
Córnea/metabolismo , Células Epiteliais/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/fisiologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo , Córnea/citologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Proteínas Imediatamente Precoces/efeitos dos fármacos , MAP Quinase Quinase 1/efeitos dos fármacos , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Cicatrização/efeitos dos fármacos , Proteínas ras/efeitos dos fármacos , Proteínas ras/metabolismo
6.
Dev Cell ; 15(4): 521-33, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18854137

RESUMO

Energy generation by mitochondrial respiration is an absolute requirement for cardiac function. Here, we used a heart-specific conditional knockout approach to inactivate the X-linked gene encoding Holocytochrome c synthase (Hccs), an enzyme responsible for activation of respiratory cytochromes c and c1. Heterozygous knockout female mice were thus mosaic for Hccs function due to random X chromosome inactivation. In contrast to midgestational lethality of Hccs knockout males, heterozygous females appeared normal after birth. Analyses of heterozygous embryos revealed the expected 50:50 ratio of Hccs deficient to normal cardiac cells at midgestation; however, diseased tissue contributed progressively less over time and by birth represented only 10% of cardiac tissue volume. This change is accounted for by increased proliferation of remaining healthy cardiac cells resulting in a fully functional heart. These data reveal an impressive regenerative capacity of the fetal heart that can compensate for an effective loss of 50% of cardiac tissue.


Assuntos
Coração Fetal/embriologia , Coração/embriologia , Homeostase , Miócitos Cardíacos/fisiologia , Organogênese/genética , Animais , Embrião de Mamíferos , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Liases/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Cardiovasculares , Mosaicismo/embriologia , Miocárdio/citologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Gravidez , Transgenes , Inativação do Cromossomo X , beta-Galactosidase/genética
7.
Genomics ; 79(1): 51-7, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11827457

RESUMO

We have shown by indirect immunofluorescence and enhanced green fluorescent protein fusions that a mammalian sequence exhibiting similar levels of homology to the two yeast heme lyases Cyc3p (holocytochrome c synthase; HCCS) and Cyt2p (holocytochrome c1 synthase; HCC1S) is also targeted to mitochondria. The human protein was able to complement the yeast Cyc3p (but not Cyt2p) deficiency, which indicates that it specifically activates apocytochrome c. Consistent with a respiratory role, expression of the mammalian gene was detected in all tissues, with the highest levels found in heart. Notably, the human gene HCCS is the only known gene located within the critical region for the deletion-defined disorder microphthalmia with linear skin defects (MLS). We believe the spectrum of clinical features seen in females with MLS and the paucity of male patients are consistent with significant involvement of HCCS. Toward clarification of a role for HCCS in disease, we have extensively characterized the X-linked mouse Hccs genomic locus, showing conservation in gene size and arrangement despite its location in a region that has undergone significant evolutionary rearrangement.


Assuntos
Apoproteínas/metabolismo , Grupo dos Citocromos c/metabolismo , Liases/genética , Microftalmia/genética , Saccharomyces cerevisiae/genética , Células 3T3 , Sequência de Aminoácidos , Animais , Células COS , Citocromos c , Ativadores de Enzimas/metabolismo , Evolução Molecular , Feminino , Ligação Genética , Células HeLa , Humanos , Liases/metabolismo , Masculino , Camundongos , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA