RESUMO
S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 µm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.
Assuntos
Óxido Nítrico , Espectrometria de Massas em Tandem , S-Nitroso-N-Acetilpenicilamina/farmacologia , Óxido Nítrico/metabolismo , Fotólise , Cromatografia Líquida , Doadores de Óxido Nítrico/química , OxigênioRESUMO
Basement membrane invasion defines malignant transformation of surface premalignancy. Treatment of oral squamous cell carcinoma (OSCC) cells with the synthetic vitamin A derivative, fenretinide (4HPR), induces numerous cancer-preventive effects including suppression of basement membrane invasion, elimination of anchorage-independent growth, disruption of actin cytoskeletal components and inhibition of the invasion-enabling focal adhesive kinase. The purpose of this study was to elucidate 4HPR's effects on additional invasion-relevant mechanisms including matrix metalloproteinase (MMP) activation and function, cell-extracellular matrix (ECM) attachments and interaction with a kinase that is essential for the epithelial-myoepithelial transformation i.e. c-Jun NH2-terminal kinase (JNK). Our data revealed that 4HPR binds with high affinity to the ATP-binding site of all three JNK isoforms with concurrent suppression of kinase function. Additional studies showed 4HPR treatment inhibited both OSCC cell-ECM adhesion and MMP activation and function. JNK downregulation and induced expression studies confirmed that the JNK3 isoform conveyed that largest impact on OSCC migration and invasion. Biodegradable polymeric implants formulated to preserve 4HPR's function and bioavailability were employed to assess 4HPR's chemopreventive impact on an OSCC tumor induction model. These studies revealed 4HPR local delivery significantly inhibited OSCC tumor size, mitotic indices and expression of the endothelial marker, erythroblast transformation-specific-related gene with concurrent increases in tumor apoptosis (cleaved caspase-3). Collectively, these data show that 4HPR suppresses invasion at multiple sites including 'outside-in' signaling, cell-ECM interactions and suppression of MMPs. These functions are also essential for physiologic function. Regulation is therefore essential and reinforces the pharmacologic advantage of local delivery chemopreventive formulations. .
Assuntos
Carcinoma de Células Escamosas , Fenretinida , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Fenretinida/farmacologia , Fenretinida/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Caspase 3 , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Vitamina A , Actinas , Matriz Extracelular/patologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Metaloproteinases da Matriz , Trifosfato de Adenosina , Invasividade NeoplásicaRESUMO
Sandostatin LAR (SLAR) is an injectable long-acting release (LAR) microsphere formulation for octreotide based on a biodegradeable glucose star copolymer of d,l-lactic and glycolic acids (PLGA-glu), which is primarily used for the treatment of patients with acromegaly. There currently is no generic SLAR approved in the United States despite expiration of patent coverage. To understand better this important formulation, SLAR was assessed for its composition and physical-chemical properties. Octreotide release kinetics was monitored under physiological conditions over 56 days together with several bioerosion parameters [mass loss, water uptake, pH of release media, polymer molecular weight (Mw), and confocal microscopy after BODIPY uptake]. A significant increase in the amount of released peptide occurred after day 14. After 1 day of incubation in PBST, octreotide was not extractable completely from SLAR during 2 h of the extraction process, but complete extraction was accomplished after 24 h, which suggested that strong and noncovalent PLGA-octreotide interactions occurred beginning in the initial release phase. Leuprolide is considered as a cationic peptide competitor for octreotide-PLGA interactions and its presence in the release medium resulted in more continuous octreotide release from SLAR, which was linearly correlated with the mass loss from the polymer (i.e., an indication of erosion-controlled release). These data strongly suggest that octreotide forms a salt with acid end groups of linear PLGA chains that are either present as impurities in, and/or produced by the degradation of, the PLGA-Glu. This salt is expected to catalyze octreotide acylation and extend peptide release beyond that driven by erosion control. The characterization studies of physicochemical properties of SLAR described here could be useful for the development and regulatory evaluation of generic octreotide microspheres as well as new polymer formulations, in which the polymer strongly interacts with encapsulated peptides.
Assuntos
Portadores de Fármacos/química , Glucose/química , Microesferas , Octreotida/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Acilação , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Medicamentos Genéricos/química , Cinética , Leuprolida/química , Peso Molecular , Porosidade , Temperatura de TransiçãoRESUMO
The 1-month Lupron Depot (LD) is a 75/25 acid-capped poly(lactic-co-glycolic acid) (PLGA) microsphere product encapsulating water-soluble leuprolide acetate with no generic products available in the U.S. Composition-equivalent PLGA microsphere formulations to the LD as a function of raw material and manufacturing variables were developed by using the solvent evaporation encapsulation method. The following variables were adjusted: polymer supplier/polymerization type, gelatin supplier/bloom number, polymer concentration, first homogenization speed and time, volume of primary water phase, second homogenization time, volume of secondary water phase, and stirring rate. The loading and encapsulation efficiency (EE) of leuprolide and gelatin were determined to identify a large number of composition-equivalent formulations within a ±10% specification of the LD. Key physical-chemical properties of the formulations (e.g., morphology, particle size distribution, glass transition temperature (Tg), residual moisture and solvent, and porosity) were characterized to determine the effect of manufacturing variables on the product attributes. The EE of gelatin across all formulations prepared (101 ± 1%) was observed to be much higher than the EE of leuprolide (57 ± 1%). Judicious adjustment of polymer concentration, second homogenization time, and volume of second water phase was key to achieving high EE of leuprolide, although EE higher than 70% was not easily achievable owing to the difficulty of emulsifying highly viscous primary emulsion into homogeneous small droplets that could prevent peptide loss during the second homogenization under the conditions and equipment used. The in vitro release kinetics of the formulations was highly similar to the LD in a zero-order manner after â¼20% initial burst release, indicating a critical role of the composition on peptide release in this formulation. The characterization of composition-equivalent formulations described here could be useful for further development of generic leuprolide PLGA microspheres and for guiding decisions on the influence of process variables on product physicochemical attributes and release performance.
Assuntos
Leuprolida/química , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Gelatina/química , Leuprolida/administração & dosagem , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , PorosidadeRESUMO
Cationic peptides are well known to readily bind poly(lactic-co-glycolic acids) (PLGAs) with a carboxylic acid (-COOH) end group, which poses a significant challenge to develop PLGA-based delivery systems for peptide therapeutics. This binding has been considered as a critical step leading to the peptide acylation within PLGA-based formulations, which is also known to affect microencapsulation and release. Herein, we utilized nano isothermal titration calorimetry (NanoITC) to investigate the thermodynamics of peptide-PLGA binding in dimethyl sulfoxide (DMSO) using a model cationic octapeptide, octreotide, which contains two primary amino groups located at its N-terminus and lysine side chain at position five. ITC results of PLGAs with different lactic acid to glycolic acid ratios (50:50 to 100:0) revealed that the extent of the interaction with the octreotide was solely dependent on the availability of the acid end group of the PLGA. The binding constants (Ka) at 37 °C were determined in a narrow range from 1.33 to 1.72 × 104 M-1 with 0.59 to 0.66 binding stoichiometries irrespective of the lactic/glycolic acid ratio in the PLGA-COOH. Over 25-65 °C, the octreotide-PLGA-COOH interactions were found to be enthalpically favored (ΔH < 0) and entropically unfavorable (ΔS < 0). Hence, the interactions were characterized as enthalpically driven. At different sodium chloride (NaCl) levels, the sensitivity of thermodynamics of the interactions to the charge screening effect contributed by the NaCl unveiled the actual driving force of the octreotide-PLGA-COOH interactions is simple ion-pairing.
Assuntos
Ácido Láctico , Octreotida , Calorimetria , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , TermodinâmicaRESUMO
The light induced nitric oxide (NO) release properties of S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) NO donors doped within polydimethylsiloxane (PDMS) films (PDMS-SNAP and PDMS-GSNO respectively) for potential inhaled NO (iNO) applications is examined. To achieve photolytic release of gas phase NO from the PDMS-SNAP and PDMS-GSNO films, narrow-band LED light sources are employed and the NO concentration in a N2 sweep gas above the film is monitored with an electrochemical NO sensor. The NO release kinetics using LED sources with different nominal wavelengths and optical power densities are reported. The effect of the NO donor loading within the PDMS films is also examined. The NO release levels can be controlled by the LED triggered release from the NO donor-doped silicone rubber films in order to generate therapeutic levels in a sweep gas for suitable durations potentially useful for iNO therapy. Hence this work may lay the groundwork for future development of a highly portable iNO system for treatment of patients with pulmonary hypertension, hypoxemia, and cystic fibrosis.
Assuntos
Portadores de Fármacos/química , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitrosoglutationa/química , Silicones/química , Liberação Controlada de Fármacos , Gases/química , Cinética , Membranas Artificiais , Doadores de Óxido Nítrico/efeitos da radiação , S-Nitroso-N-Acetilpenicilamina/efeitos da radiação , S-Nitrosoglutationa/efeitos da radiação , Raios UltravioletaRESUMO
In April 2016, the Food and Drug Administration approved the first biosimilar monoclonal antibody (mAb), Inflectra/Remsima (Celltrion), based off the original product Remicade (infliximab, Janssen). Biosimilars promise significant cost savings for patients, but the unavoidable differences between innovator and copycat biologics raise questions regarding product interchangeability. In this study, Remicade and Remsima were examined by native mass spectrometry, ion mobility, and quantitative peptide mapping. The levels of oxidation, deamidation, and mutation of individual amino acids were remarkably similar. We found different levels of C-terminal truncation, soluble protein aggregates, and glycation that all likely have a limited clinical impact. Importantly, we identified more than 25 glycoforms for each product and observed glycoform population differences, with afucosylated glycans accounting for 19.7% of Remicade and 13.2% of Remsima glycoforms, which translated into a 2-fold reduction in the level of FcγIIIa receptor binding for Remsima. While this difference was acknowledged in Remsima regulatory filings, our glycoform analysis and receptor binding results appear to be somewhat different from the published values, likely because of methodological differences between laboratories and improved glycoform identification by our laboratory using a peptide map-based method. Our mass spectrometry-based analysis provides rapid and robust analytical information vital for biosimilar development. We have demonstrated the utility of our multiple-attribute monitoring workflow using the model mAbs Remicade and Remsima and have provided a template for analysis of future mAb biosimilars.
Assuntos
Anticorpos Monoclonais/química , Medicamentos Biossimilares/química , Infliximab/química , Cromatografia em Gel , Glicosilação , Interferometria , Espectrometria de Massas/métodos , Mapeamento de PeptídeosRESUMO
Herein we describe a formulation of self-encapsulating poly(lactic-co-glycolic acid) (PLGA) microspheres for vaccine delivery. Self-healing encapsulation is a novel encapsulation method developed by our group that enables the aqueous loading of large molecules into premade PLGA microspheres. Calcium phosphate (CaHPO4) adjuvant gel was incorporated into the microspheres as a protein-trapping agent for improved encapsulation of antigen. Microspheres were found to have a median size of 7.05 ± 0.31 µm, with a w/w loading of 0.60 ± 0.05% of ovalbumin (OVA) model antigen. The formulation demonstrated continuous release of OVA over a 49-day period. Released OVA maintained its antigenicity over the measured period of >21 days of release. C57BL/6 mice were immunized via the intranasal route with prime and booster doses of OVA (10 µg) loaded into microspheres or coadministered with cholera toxin B (CTB), the gold standard of mucosal adjuvants. Microspheres generated a Th2-type response in both serum and local mucosa, with IgG antibody responses approaching those generated by CTB. The results suggest that this formulation of self-encapsulating microspheres shows promise for further study as a vaccine delivery system.
Assuntos
Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Vacinas/administração & dosagem , Vacinas/química , Animais , Fosfatos de Cálcio/química , Toxina da Cólera/química , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos/métodos , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Ovalbumina/química , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
Fenretinide, a chemotherapeutic agent for cancer, is water-insoluble and has a very low oral bioavailability. Hence, the objective was to deliver it as an injectable depot and improve the drug solubility and release behavior from poly(lactide-co-glycolide) (PLGA) microspheres by incorporating nonionic surfactants with fenretinide. Enhancement of drug solubilization was observed with Brij 35 or 98, Tween 20, and Pluronic F127, but not Pluronic F68. Co-incorporation of Brij 98 with fenretinide significantly changed the microsphere morphology and improved the fenretinide release profile. The most optimal microsphere formulation, with 20% Brij 98 as excipient, showed an initial in vitro burst around 20% and a sustained release over 28 days in a solubilizing release medium at 37 °C. The effect of addition of MgCO3, drug loading, and polymer blending on the release of fenretinide from PLGA microspheres was also investigated and observed to enhance the drug release. Two sustained release formulations, one incorporating 20% Brij 98 and the other incorporating 3% MgCO3 in the oil phase, were selected for dosing in Sprague-Dawley rats and compared to a single injection of an equivalent dose of fenretinide drug suspension. These two formulations were chosen due to their high encapsulation efficiency, high cumulative release, and desirable in vitro release profile. The drug suspension resulted in a higher initial release in rats compared to the polymeric formulations, however, sustained release was also observed beyond 2 weeks, which may be attributed to the physiological disposition of the drug in vivo. The two PLGA based test formulations provided the desired low initial burst of fenretinide followed by 4 weeks of in vivo sustained release.
Assuntos
Fenretinida/química , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Animais , Excipientes/química , Feminino , Interações Hidrofóbicas e Hidrofílicas , Magnésio/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos/químicaRESUMO
The feasibility of various cellulose polymer derivatives, including methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), sodium-carboxymethylcellulose (sodium-CMC), and cationic-hydroxyethylcellulose (cationic-HEC), for use as an excipient to enhance drug delivery in nasal spray formulations was investigated. Three main parameters for evaluating the polymers in nasal drug delivery applications include rheology, ciliary beat frequency (CBF), and permeation across nasal tissue. Reversible thermally induced viscosity enhancement was observed at near nasal physiological temperature when cellulose derivatives were combined with an additional excipient, poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) graft copolymer (PVCL-PVA-PEG). Cationic-HEC was shown to enhance acyclovir permeation across the nasal mucosa. None of the tested cellulosic polymers caused any adverse effects on porcine nasal tissues and cells, as assessed by alterations in CBF. Upon an increase in polymer concentration, a reduction in CBF was observed when ciliated cells were immersed in the polymer solution, and this decrease returned to baseline when the polymer was removed. While each cellulose derivative exhibited unique advantages for nasal drug delivery applications, none stood out on their own to improve more than one of the performance characteristics examined. Hence, these data may be useful for the development of new cellulose derivatives in nasal drug formulations.
Assuntos
Celulose/farmacocinética , Portadores de Fármacos/farmacocinética , Mucosa Nasal/metabolismo , Aciclovir/administração & dosagem , Aciclovir/farmacocinética , Adesividade , Administração por Inalação , Animais , Células Cultivadas , Celulose/química , Cílios/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Mucosa Nasal/efeitos dos fármacos , Permeabilidade , Polímeros/química , Polímeros/farmacocinética , Reologia , Suínos , ViscosidadeRESUMO
PURPOSE: We evaluated the controlled release of lysozyme from various poly(D,L-lactic-co-glycolic acid) (PLGA) 50/50-polyethylene glycol (PEG) block copolymers relative to PLGA 50/50. METHODS: Lysozyme was encapsulated in cylindrical implants (0.8 mm diameter) by a solvent extrusion method. Release studies were conducted in phosphate buffered saline +0.02% Tween 80 (PBST) at 37°C. Lysozyme activity was measured by a fluorescence-based assay. Implant erosion was evaluated by kinetics of polymer molecular weight decline, water uptake, and mass loss. RESULTS: Lysozyme release from an AB15 di-block copolymer (15% 5 kDa PEG, PLGA 28 kDa) was very fast, whereas an AB10 di-block copolymer (with 10% 5 kDa PEG, PLGA 45 kDa) and ABA10 tri-block copolymer (with 10% 6 kDa PEG, PLGA 27 kDa) showed release profiles similar to PLGA. We achieved continuous lysozyme release for up to 4 weeks from AB10 and ABA10 by lysozyme co-encapsulation with the pore-forming and acid-neutralizing MgCO3, and from AB15 by co-encapsulation of MgCO3 and blending AB15 with PLGA. Lysozyme activity was mostly recovered during 4 weeks. CONCLUSIONS: These block co-polymers may have utility either alone or as PLGA blends for the controlled release of proteins.
Assuntos
Ácido Láctico/química , Muramidase/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Polímeros/química , Preparações de Ação Retardada/química , Excipientes/química , Injeções , Cinética , Peso Molecular , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Próteses e Implantes , Solventes/química , Água/químicaRESUMO
Remote loading microencapsulation of peptides into polymer microspheres without organic solvent represents a promising alternative to develop long-acting release depots relative to conventional encapsulation methods. Here, we formulated drug-free microspheres from two kinds of uncapped poly(lactide-co-glycolides) (PLGAs), i.e., ring-opening polymerized Expansorb® DLG 50-2A (50/50, 11.2 kDa) and Expansorb® DLG 75-2A (75/25, 9.0 kDa), and evaluated their potential capacity to remote-load and control the release of two model peptides, leuprolide and octreotide. Degradation and erosion kinetics, release mechanism, and storage stability was also assessed. As control formulations, peptide was loaded in the same PLGA 75/25 polymer by the conventional double emulsion-solvent evaporation method (W/O/W) and remote loaded in polycondensation poly(lactic-co-glycolic acid) 75/25 (Wako 7515, 14.3 kDa). Loading content of 6.7%-8.9% w/w (~ 67%-89% encapsulation efficiency (EE)) was attained for octreotide, and that of 9.5% w/w loading (~ 95% EE) was observed for leuprolide, by the remote loading paradigm. Octreotide and leuprolide were both slowly and continuously released in vitro from the remote-loaded Expansorb® DLG 75-2A MPs for over 56 days, which was highly similar to that observed from traditionally-loaded formulations by W/O/W (8.8% loading, 52.8% EE). The faster release kinetics was observed for the faster degrading PLGA 50/50 remote-loaded Expansorb® DLG 50-2A MPs relative to microspheres from the PLGA 75/25 Expansorb® DLG 75-2A. Despite slight differences in degradation kinetics, the release mechanism of octreotide from the Expansorb® microspheres, whether remote loaded or by W/O/W, was identical as determined by release vs. mass loss curves. Octreotide acylation was also minimal (< ~ 10%) for this polymer. Finally, drug-free Expansorb® DLG 75-2A MPs displayed excellent storage stability over 3 months. Overall, this work offers support for the use of ring-opening Expansorb® PLGA-based microspheres to remote load peptides to create simple and effective long-acting release depots.
Assuntos
Octreotida , Ácido Poliglicólico , Ácido Poliglicólico/química , Octreotida/química , Poliglactina 910 , Ácido Láctico/química , Preparações de Ação Retardada , Leuprolida , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes , Tamanho da PartículaRESUMO
Poly(lactide-co-glycolide) and poly(lactic-co-glycolic acids) (PLGAs) play a critical role in the development of commercial long-acting injectable microsphere formulations. However, very little information is available describing the impact of PLGA manufacturer and monomer distribution along the polymer chain (e.g., glycolic blockiness (Rc) and average lactic block length (LL)) on the degradation and release behavior of PLGA drug carriers in vitro and in vivo. Here, we compared the in vitro and in vivo performance of (a) four leuprolide-loaded microsphere formulations prepared from similar low-molecular-weight acid-capped PLGAs (10-14 kD, i.e., Expansorb® DLG 75-2A, Purasorb® PDLG 7502A, Resomer® RG 752H and Wako® 7515) and (b) two triamcinolone acetonide-loaded (Tr-A) microsphere formulations from similar medium-molecular-weight ester-capped PLGAs (i.e., Expansorb® DLG 75-4E and Resomer® RG 753S). Lupron Depot® and Zilretta® were used as reference commercial products. The six 75/25 PLGAs displayed block lengths that were either above or below values expected from a random copolymer. Drug release and polymer degradation were monitored simultaneously in vitro and in vivo using a cage implant system. The four leuprolide-loaded formulations showed similar release and degradation patterns with some notable differences between each other. Microspheres from the Expansorb® polymer displayed lower LL and higher Rc relative to the other 3 PLGA 75/25 microspheres, and likewise exhibited distinct peptide release and degradation behavior compared to the other 3 formulations. For each formulation, leuprolide release was erosion-controlled up to about 30% release after the initial burst followed by a faster than erosion release phase. In vitro release was similar as that in vivo over the first phase but notably different from the latter release phase, particularly for the most blocky Expansorb® formulation. The Purasorb® and Wako® formulations displayed highly similar performance in release, degradation, and erosion analysis. By contrast, the two ester-capped Expansorb® DLG 75-4E and Resomer® RG 753S used to prepare Tr-A microspheres shared essentially identical LL and higher Rc and behaved similarly although the Expansorb® degraded and released the steroid faster in vivo, suggestive of other factors responsible (e.g., residual monomer). The in vivo release performance for both drugs from the six microsphere formulations was similar to that of the commercial reference products. In summary, this work details information on comparing the similarities and differences in in vitro and in vivo performance of drug-loaded microspheres as a function of manufacturing and microstructural variables of different types of PLGA raw materials utilized and could, therefore, be meaningful in guiding the source control during development and manufacturing of PLGA microsphere-based drug products. Future work will expand the analysis to include a broader range of LL and higher Rc, and add additional important formulation metrics (e.g., thermal analysis, and residual monomer, moisture, and organic solvent levels).
RESUMO
This study presents the utilization of a novel, highly lipophilic nitric oxide (NO) donor molecule, S-nitroso-1-adamantanethiol (SNAT), for developing an NO-emitting polymer surface aimed at preventing thrombus formation and bacterial infection in extracorporeal circuits (ECCs). S-nitroso-1-adamantanethiol, a tertiary nitrosothiol-bearing adamantane species, was synthesized, characterized, and used to impregnate polyvinyl chloride (PVC) tubing for subsequent in vivo evaluation. The impregnation process with SNAT preserved the original mechanical strength of the PVC. In vitro assessments revealed sustained NO release from the SNAT-impregnated PVC tubing (iSNAT), surpassing or matching endothelial NO release levels for up to 42 days. The initial NO release remained stable even after 1 year of storage at -20°C. The compatibility of iSNAT with various sterilization techniques (OPA Plus, hydrogen peroxide, EtO) was tested. Acute in vivo experiments in a rabbit model demonstrated significantly reduced thrombus formation in iSNAT ECCs compared with controls, indicating the feasibility of iSNAT to mitigate coagulation system activation and potentially eliminate the need for systemic anticoagulation. Moreover, iSNAT showed substantial inhibition of microbial biofilm formation, highlighting its dual functionality. These findings underscore the promising utility of iSNAT for long-term ECC applications, offering a multifaceted approach to enhancing biocompatibility and minimizing complications.
RESUMO
The effects and potential mechanisms of the vascular endothelial cell (EC)-enriched microRNA-15a (miR-15a) on angiogenesis remain unclear. Here, we show a novel finding that EC-selective miR-15a transgenic overexpression leads to reduced blood vessel formation and local blood flow perfusion in mouse hindlimbs at 1-3 weeks after hindlimb ischemia. Mechanistically, gain- or loss-of-miR-15a function by lentiviral infection in ECs significantly reduces or increases tube formation, cell migration, and cell differentiation, respectively. By FGF2 and VEGF 3'-UTR luciferase reporter assays, Real-time PCR, and immunoassays, we further identified that the miR-15a directly targets FGF2 and VEGF to facilitate its anti-angiogenic effects. Our data suggest that the miR-15a in ECs can significantly suppress cell-autonomous angiogenesis through direct inhibition of endogenous endothelial FGF2 and VEGF activities. Pharmacological modulation of miR-15a function may provide a new therapeutic strategy to intervene against angiogenesis in a variety of pathological conditions.
Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/patologia , MicroRNAs/fisiologia , Neovascularização Patológica/prevenção & controle , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Primers do DNA , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
PURPOSE: To investigate the effect of γ-irradiation of poly(lactic-co-glycolic acid) (PLGA)/Al(OH)3/0 or 5 wt% diethyl phthalate (DEP) microspheres for active self-healing encapsulation of vaccine antigens. METHODS: Microspheres were irradiated with 6°Co at 2.5 and 1.8 MRad and 0.37 and 0.20 MRad/h. Encapsulation of tetanus toxoid (TT) was achieved by mixing Al(OH)3-PLGA microspheres with TT solution at 10-38°C. Electron paramagnetic resonance (EPR) spectroscopy was used to examine free radical formation. Glass transition temperature (T(g)) and molecular weight of PLGA was measured by differential scanning calorimetry and gel permeation chromatography, respectively. Loading and release of TT were examined by modified Bradford, amino acid analysis, and ELISA assays. RESULTS: EPR spectroscopy results indicated absence of free radicals in PLGA microspheres after γ-irradiation. Antigen-sorbing capacity, encapsulation efficiency, and T(g) of the polymer were also not adversely affected. When DEP-loaded microspheres were irradiated at 0.2 MRad/h, some PLGA pores healed during irradiation and PLGA healing during encapsulation was suppressed. The molecular weight of PLGA was slightly reduced when DEP-loaded microspheres were irradiated at the same dose rate. At the 0.37 MRad/h dose rate, these trends were not observed and the full immunoreactivity of TT was preserved during encapsulation and 1-month release. Gamma irradiation slightly increased TT initial burst release. The small increase in total irradiation dose from 1.8 to 2.5 MRad had insignificant effect on the polymer and microspheres properties analyzed. CONCLUSIONS: Gamma irradiation is a plausible approach to provide a terminally sterilized, self-healing encapsulation PLGA excipient for vaccine delivery.
Assuntos
Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Ácido Poliglicólico/química , Esterilização , Toxoide Tetânico/administração & dosagem , Raios gama , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Esterilização/métodos , Temperatura de TransiçãoRESUMO
The once-weekly Bydureon® (Bdn) PLGA microsphere formulation encapsulating the GLP-1 receptor agonist, exenatide acetate, is an important complex injectable product prepared by coacervation for the treatment of type 2 diabetic patients. Encapsulation by coacervation is useful to minimize an undesirable initial burst of exenatide, but it suffers from manufacturing difficulties such as process scale-up and batch-to-batch variations. Herein we prepared exenatide acetate-PLGA formulations of similar compositions using the desirable alternative double emulsion-solvent evaporation technique. After screening several process variables, we varied the PLGA concentration, the hardening temperature, and the collected particle size range, and determined the resulting drug and sucrose loading, initial burst release, in vitro retention kinetics, and peptide degradation profiles using Bdn as a positive control. All formulations exhibited a triphasic release profile with a burst, lag, and rapid release phase, although the burst release was greatly decreased to <5% for some. Marked differences were observed in the peptide degradation profiles, particularly the oxidized and acylated fractions, when the polymer concentration was varied. For one optimal formulation, the release and peptide degradation profiles were similar to Bdn microspheres, albeit with an induction time shift of one week, likely due to the slightly higher Mw of PLGA in Bdn. These results highlight the effects of key manufacturing variables on drug release and stability in composition-equivalent microspheres encapsulating exenatide acetate and indicate the potential of manufacturing the microsphere component of Bdn by solvent evaporation.
Assuntos
Ácido Láctico , Ácido Poliglicólico , Humanos , Exenatida , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ácido Láctico/química , Ácido Poliglicólico/química , Microesferas , Solventes , Tamanho da PartículaRESUMO
Setmelanotide (Imcivree™) was developed as a daily injectable therapeutic peptide for the treatment of rare forms of syndromic obesity, such as POMC deficiency and leptin receptor deficiency. The important option of poly(lactic-co-glycolic acid) (PLGA) controlled release microspheres has become more attractive for this class of drugs upon the discovery that net positively charged peptides can be remote-loaded rapidly from aqueous peptide solution into blank microspheres at high loading and encapsulation efficiency. Here we sought to remote-load setmelanotide in PLGA microspheres and examine its potential for long-term controlled release and body weight control. The influence of PLGA microsphere porosity was investigated with respect to morphology, drug loading, and in vitro release profiles. Increased density of the microspheres inhibited the progress of encapsulation of the dicationic peptide. A diet-induced obese murine model was then used to determine the pharmacokinetic profile and to evaluate long-term efficacy of an optimal formulation. Remote loaded PLGA formulations encapsulated setmelanotide as high as â¼63% (â¼6.3% w/w loading) and exhibited slow and continuous peptide release over â¼6 weeks in vitro largely independent of microsphere porosity. The obtained in vivo release pattern from deconvolution of the pharmacokinetics after subcutaneous microsphere injection was consistent with the in vitro release profile but with a lower initial burst release and overall slightly faster release rate. After a single injection of remote-loaded setmelanotide, continuous long-term inhibition of food intake and body weight control was observed over 17 and 30 days, respectively. The improvement in body weight control over drug-free microsphere vehicle-treated control groups matched the observed PK profile. This study provides the first report of long-acting release formulation for 1-month controlled release of setmelanotide and body weight control in a diet induced obese murine model, and supports the further development of long-acting treatment options for obese patients.
Assuntos
Ácido Láctico , Ácido Poliglicólico , Humanos , Camundongos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microesferas , Portadores de Fármacos , Preparações de Ação Retardada , Glicóis , Modelos Animais de Doenças , alfa-MSH , Obesidade/tratamento farmacológico , Peso Corporal , Tamanho da PartículaRESUMO
Emulsion-based solvent evaporation microencapsulation methods for producing PLGA microspheres are complex often leading to empirical optimization. This study aimed to develop a more detailed understanding of the effects of process variables on the complex emulsification processes during encapsulation of leuprolide in PLGA microspheres using a high-shear rotor-stator mixer. Following extensive analysis of previously developed formulation conditions that yield microspheres of equivalent composition to the commercial 1-month Lupron Depot, multiple variables during the formation of primary and secondary emulsion were investigated with the aid of dimensional analysis, including: rotor speed (ω) and time (t), dispersed phase fraction (Φ) and continuous phase viscosity (µc). The dimensionless Sauter mean diameter (d3,2) of primary emulsion was observed to be proportional to the product of several key dimensionless groups (Φ1,We,Re,ω1t1) raised to the appropriate power indices. A new dimensionless group (Θ ) (surface energy/energy input) was used to rationalize insertion of a proportionate time dependence in the scaling of the d3,2. The dimensionless d3,2 of secondary emulsion was found proportional to the product of three dimensionless groups ( [Formula: see text] ) raised to the appropriate power indices. The increased viscosity of the primary emulsion, decreased secondary water phase volume and reduced second homogenization time each elevated encapsulation efficiency of peptide by reducing drug leakage to the outer water phase. These results could be useful for dimensional analysis and improving manufacturing of PLGA microspheres by the solvent evaporation method.
RESUMO
Copolymers of lactic (or lactide) and glycolic (or glycolide) acids (PLGAs) are among the most commonly used materials in biomedical applications, such as parenteral controlled drug delivery, due to their biocompatibility, predictable degradation rate, and ease of processing. Besides manufacturing variables of drug delivery vehicles, changes in PLGA raw material properties can affect product behavior. Accordingly, an in-depth understanding of polymer-related "critical quality attributes" can improve selection and predictability of PLGA performance. Here, we selected 19 different PLGAs from five manufacturers to form drug-free films, submillimeter implants, and microspheres and evaluated differences in their water uptake, degradation, and erosion during in vitro incubation as a function of L/G ratio, polymerization method, molecular weight, end-capping, and geometry. Uncapped PLGA 50/50 films from different manufacturers with similar molecular weights and higher glycolic unit blockiness and/or block length values showed faster initial degradation rates. Geometrically, larger implants of 75/25, uncapped PLGA showed higher water uptake and faster degradation rates in the first week compared to microspheres of the same polymers, likely due to enhanced effects of acid-catalyzed degradation from PLGA acidic byproducts unable to escape as efficiently from larger geometries. Manufacturer differences such as increased residual monomer appeared to increase water uptake and degradation in uncapped 50/50 PLGA films and poly(lactide) implants. This dataset of different polymer manufacturers could be useful in selecting desired PLGAs for controlled release applications or comparing differences in behavior during product development, and these techniques to further compare differences in less reported properties such as sequence distribution may be useful for future analyses of PLGA performance in drug delivery.