Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 17(6): 379-94, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211488

RESUMO

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina/metabolismo , Ubiquitinação , Animais , Humanos , Transdução de Sinais , Ubiquitina-Proteína Ligases/fisiologia
2.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914427

RESUMO

DNA-protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT-type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin-regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of Caenorhabditis elegans GCNA-1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication-coupled DPC resolution processes.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Sumoilação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Cinética , Proteínas Nucleares/genética , Proteólise
3.
Nucleic Acids Res ; 47(8): 4011-4025, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30715484

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestrutura , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imagem Óptica , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
4.
Chromosoma ; 122(4): 275-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760561

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.


Assuntos
Proteínas de Transporte/metabolismo , Síndrome de Cockayne/metabolismo , Reparo do DNA , Transtornos de Fotossensibilidade/metabolismo , Transcrição Gênica , Ubiquitina Tiolesterase/metabolismo , Animais , Proteínas de Transporte/genética , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Humanos , Transtornos de Fotossensibilidade/enzimologia , Transtornos de Fotossensibilidade/genética , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina
5.
Anal Biochem ; 440(2): 227-36, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23743150

RESUMO

Protein ubiquitination plays an important role in the regulation of many cellular processes, including protein degradation, cell cycle regulation, apoptosis, and DNA repair. To study the ubiquitin proteome we have established an immunoaffinity purification method for the proteomic analysis of endogenously ubiquitinated protein complexes. A strong, specific enrichment of ubiquitinated factors was achieved using the FK2 antibody bound to protein G-beaded agarose, which recognizes monoubiquitinated and polyubiquitinated conjugates. Mass spectrometric analysis of two FK2 immunoprecipitations (IPs) resulted in the identification of 296 FK2-specific proteins in both experiments. The isolation of ubiquitinated and ubiquitination-related proteins was confirmed by pathway analyses (using Ingenuity Pathway Analysis and Gene Ontology-annotation enrichment). Additionally, comparing the proteins that specifically came down in the FK2 IP with databases of ubiquitinated proteins showed that a high percentage of proteins in our enriched fraction was indeed ubiquitinated. Finally, assessment of protein-protein interactions revealed that significantly more FK2-specific proteins were residing in protein complexes than in random protein sets. This method, which is capable of isolating both endogenously ubiquitinated proteins and their interacting proteins, can be widely used for unraveling ubiquitin-mediated protein regulation in various cell systems and tissues when comparing different cellular states.


Assuntos
Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica/métodos , Ubiquitinação , Anticorpos Monoclonais/imunologia , Células HeLa , Humanos , Imunoprecipitação , Espectrometria de Massas , Proteoma/imunologia
6.
Nat Genet ; 44(5): 598-602, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466611

RESUMO

Transcription-coupled nucleotide-excision repair (TC-NER) is a subpathway of NER that efficiently removes the highly toxic RNA polymerase II blocking lesions in DNA. Defective TC-NER gives rise to the human disorders Cockayne syndrome and UV-sensitive syndrome (UV(S)S). NER initiating factors are known to be regulated by ubiquitination. Using a SILAC-based proteomic approach, we identified UVSSA (formerly known as KIAA1530) as part of a UV-induced ubiquitinated protein complex. Knockdown of UVSSA resulted in TC-NER deficiency. UVSSA was found to be the causative gene for UV(S)S, an unresolved NER deficiency disorder. The UVSSA protein interacts with elongating RNA polymerase II, localizes specifically to UV-induced lesions, resides in chromatin-associated TC-NER complexes and is implicated in stabilizing the TC-NER master organizing protein ERCC6 (also known as CSB) by delivering the deubiquitinating enzyme USP7 to TC-NER complexes. Together, these findings indicate that UVSSA-USP7­mediated stabilization of ERCC6 represents a critical regulatory mechanism of TC-NER in restoring gene expression.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Síndrome de Cockayne/genética , DNA Helicases/química , Enzimas Reparadoras do DNA/química , Reparo do DNA/genética , Transcrição Gênica , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Células Cultivadas , Cromatina/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Humanos , Imunoprecipitação , Mutação/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proteômica , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina , Raios Ultravioleta
7.
J Cell Biol ; 186(6): 835-47, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19797077

RESUMO

Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)-dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV-DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)-DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle-independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia-mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage-induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/efeitos da radiação , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Raios Ultravioleta , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Epigênese Genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Transativadores/genética , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA