Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(5): 1730-3, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24432762

RESUMO

Nanosheets of a crystalline 2D carbon nitride were obtained by ionothermal synthesis of the layered bulk material poly(triazine imide), PTI, followed by one-step liquid exfoliation in water. Triazine-based nanosheets are 1-2 nm in height and afford chemically and colloidally stable suspensions under both basic and acidic conditions. We use solid-state NMR spectroscopy of isotopically enriched, restacked nanosheets as a tool to indirectly monitor the exfoliation process and carve out the chemical changes occurring upon exfoliation, as well as to determine the nanosheet thickness. PTI nanosheets show significantly enhanced visible-light driven photocatalytic activity toward hydrogen evolution compared to their bulk counterpart, which highlights the crucial role of morphology and surface area on the photocatalytic performance of carbon nitride materials.

2.
Angew Chem Int Ed Engl ; 52(9): 2435-9, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23341324

RESUMO

A new dimension: The doping of amorphous poly(triazine imide) (PTI) through ionothermal copolymerization of dicyandiamide with 4-amino-2,6-dihydroxypyrimidine (4AP) results in triazine-based carbon nitrides with increased photoactivity for water splitting compared to crystalline poly(triazine imide) (PTI/Li(+)Cl(-), see picture) and melon-type carbon nitrides. This family of carbon nitride semiconductors has potential as low-cost, environmentally clean photocatalysts for solar fuel production.

3.
Chemistry ; 18(7): 2143-52, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22231392

RESUMO

The transfer of supramolecular templating to the realm of metal-organic frameworks opens up new avenues to the design of novel hierarchically structured materials. We demonstrate the first synthesis of mesostructured zinc imidazolates in the presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB), which acts as a template giving rise to ordered lamellar hybrid materials. A high degree of order spanning the atomic and mesoscale was ascertained by powder X-ray diffraction, electron diffraction, as well as solid-state NMR and IR spectroscopy. The metrics of the unit cells obtained for the zinc methylimidazolate and imidazolate species are a=(11.43±0.45), b=(9.55±0.35), c=(27.19±0.34) Å, and a=(10.98±0.90), b=(8.95±0.95), c=(26.33±0.34) Å, respectively, assuming orthorhombic symmetry. The derived structure model is consistent with a mesolamellar structure composed of bromine-terminated zinc (methyl)imidazolate chains interleaved with motionally rigid cationic surfactant molecules in an all-trans conformation. The hybrid materials exhibit unusually high thermal stability up to 300 °C, at which point CTAB is lost and evidence for a thermally induced transformation into poorly crystalline mesostructures with larger feature sizes is obtained. Treatment with ethanol effects the extraction of CTAB from the material, followed by facile transformation into pure microporous ZIF-8 nanoparticles within minutes, thus demonstrating a unique transition from a mesostructure into a microporous zinc imidazolate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA