Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(3): 2262-79, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836095

RESUMO

An approach to perform band shifting applied to multi-spectral ocean remote sensing reflectance RRS values in the visible spectral range is presented. The band-shifting scheme aims at expressing RRS at a wavelength not originally part of the spectrum from data at neighboring bands. The scheme relies on the determination of inherent optical properties (IOPs) by a bio-optical model, the calculation of the IOPs at the target wavelength using the spectral shapes assumed for each IOP, and the operation of the bio-optical model in forward mode to express RRS at the target wavelength. The performance of the band-shifting scheme applied to bands typical of satellite missions is assessed with hyper-spectral data sets obtained from radiative transfer simulations or from field measurements. The relative error ε on the conversion factors from 488 to 490 nm is mostly within 1%. Analogous results are obtained for conversions in the red spectral domain (665, 667 and 670 nm) only for synthetic data sets. The range of ε for conversions between green bands (547, 555 and 560 nm) is within 2% to 5% depending on the data set considered. Similar results are obtained when RRS values are computed at 510 nm from data at 488 and 531 nm. In the case of the assessment with simulated data, all band-shifting operations are characterized by an ε range within 2% for all conversions when the concentration of chlorophyll-a is lower than 1 mg m(-3). Applied to satellite data, the band-shifting scheme noticeably improves the agreement between RRS data from different missions.

2.
BMC Genomics ; 12(1): 225, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21569310

RESUMO

BACKGROUND: Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. RESULTS: Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1.The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. CONCLUSIONS: This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources.


Assuntos
Infecções por Escherichia coli/veterinária , Perfilação da Expressão Gênica , Doenças das Cabras/genética , Mastite Bovina/genética , Mastite/veterinária , Doenças dos Ovinos/genética , Infecções Estafilocócicas/veterinária , Infecções Estreptocócicas/veterinária , Animais , Bovinos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por Escherichia coli/genética , Feminino , Doenças das Cabras/microbiologia , Cabras , Mastite/genética , Mastite/microbiologia , Mastite Bovina/microbiologia , Redes e Vias Metabólicas , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição de Fator Regulador X , Ovinos , Doenças dos Ovinos/microbiologia , Infecções Estafilocócicas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Infecções Estreptocócicas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Bioinformatics ; 8: 400, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17945016

RESUMO

BACKGROUND: The Complete Arabidopsis Transcript MicroArray (CATMA) initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs) for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. RESULTS: GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002) were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS). A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and EuGène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs) to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. CONCLUSION: To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.


Assuntos
Proteínas de Arabidopsis/genética , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Inativação Gênica , Genoma de Planta/genética , Fatores de Transcrição/genética , Sequência de Bases , Sistemas de Gerenciamento de Base de Dados , Europa (Continente) , Dados de Sequência Molecular
4.
Nucleic Acids Res ; 33(8): 2452-63, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15863723

RESUMO

Cyclohexenyl nucleic acid (CeNA) is a nucleic acid mimic, where the (deoxy)ribose sugar has been replaced by cyclohexenyl moieties. In order to study the conformation of cyclohexenyl nucleosides by NMR, the HexRot program was developed to calculate conformations from scalar coupling constants of cyclohexenyl compounds, analogous to the methods applied for (deoxy)ribose nucleosides. The conformational equilibria and the values of the thermodynamic parameters are very similar between a cyclohexenyl nucleoside [energy difference between 2H3 (N-type) and 2H3 (S-type) is 1.8 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 10.9 kJ/mol] and a natural ribose nucleoside (energy difference between N-type and S-type is 2 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 4-20 kJ/mol). The flexibility of the cyclohexenyl nucleoside was demonstrated by the fast equilibrium between two conformational states that was observed in a CeNA-U monomer, combined with the 2H3 conformation of the cyclohexene moiety when incorporated into a Dickerson dodecamer and the 2H3 conformation when incorporated in a d(5'-GCGT*GCG-3')/d(5'-CGCACGC-3') duplex, as determined by the NMR spectroscopy. This represents the first example of a synthetic nucleoside that adopts different conformations when incorporated in different double-stranded DNA sequences.


Assuntos
Cicloexanos/química , Oligodesoxirribonucleotídeos/química , Sequência de Bases , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Nucleosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA