Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Theor Biol ; 591: 111865, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823767

RESUMO

Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.


Assuntos
Aedes , Dengue , Dengue/transmissão , Dengue/epidemiologia , Animais , Aedes/virologia , Humanos , Surtos de Doenças , Mosquitos Vetores/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Cadeias de Markov , Medição de Risco , Vírus da Dengue/fisiologia
2.
BMC Bioinformatics ; 24(1): 281, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434115

RESUMO

BACKGROUND: Network analysis is a powerful tool for studying gene regulation and identifying biological processes associated with gene function. However, constructing gene co-expression networks can be a challenging task, particularly when dealing with a large number of missing values. RESULTS: We introduce GeCoNet-Tool, an integrated gene co-expression network construction and analysis tool. The tool comprises two main parts: network construction and network analysis. In the network construction part, GeCoNet-Tool offers users various options for processing gene co-expression data derived from diverse technologies. The output of the tool is an edge list with the option of weights associated with each link. In network analysis part, the user can produce a table that includes several network properties such as communities, cores, and centrality measures. With GeCoNet-Tool, users can explore and gain insights into the complex interactions between genes.


Assuntos
Redes Reguladoras de Genes , Software
3.
BMC Bioinformatics ; 23(1): 170, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534830

RESUMO

BACKGROUND: Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS: In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION: Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA
4.
PLoS Comput Biol ; 15(3): e1006875, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865618

RESUMO

West Nile virus (WNV)-a mosquito-borne arbovirus-entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential-short-range dispersal, 2) power-law-long-range dispersal in all directions, and 3) power-law biased by flyway direction -long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.


Assuntos
Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Culicidae/virologia , Humanos , Modelos Teóricos , Método de Monte Carlo , Mosquitos Vetores , Estados Unidos/epidemiologia , Febre do Nilo Ocidental/embriologia , Febre do Nilo Ocidental/virologia , Zoonoses/epidemiologia
5.
Bioscience ; 65(10): 985-1002, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955074

RESUMO

Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.

6.
J Theor Biol ; 367: 203-221, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25524151

RESUMO

Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Epidemias , Internacionalidade , Animais , Número Básico de Reprodução , Bovinos , Simulação por Computador , Gado , Modelos Biológicos , Processos Estocásticos
7.
IEEE Commun Lett ; 18(8): 1347-1350, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25422579

RESUMO

This letter presents an optimal control framework to reduce the spread of viruses in networks. The network is modeled as an undirected graph of nodes and weighted links. We consider the spread of viruses in a network as a system, and the total number of infected nodes as the state of the system, while the control function is the weight reduction leading to slow/reduce spread of viruses. Our epidemic model overcomes three assumptions that were extensively used in the literature and produced inaccurate results. We apply the optimal control formulation to crucial network structures. Numerical results show the dynamical weight reduction and reveal the role of the network structure and the epidemic model in reducing the infection size in the presence of indiscernible infected nodes.

8.
Phys Rev E ; 108(1-1): 014405, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583213

RESUMO

The Markovian approach, which assumes exponentially distributed interinfection times, is dominant in epidemic modeling. However, this assumption is unrealistic as an individual's infectiousness depends on its viral load and varies over time. In this paper, we present a Susceptible-Infected-Recovered-Vaccinated-Susceptible epidemic model incorporating non-Markovian infection processes. The model can be easily adapted to accurately capture the generation time distributions of emerging infectious diseases, which is essential for accurate epidemic prediction. We observe noticeable variations in the transient behavior under different infectiousness profiles and the same basic reproduction number R_{0}. The theoretical analyses show that only R_{0} and the mean immunity period of the vaccinated individuals have an impact on the critical vaccination rate needed to achieve herd immunity. A vaccination level at the critical vaccination rate can ensure a very low incidence among the population in the case of future epidemics, regardless of the infectiousness profiles.


Assuntos
Epidemias , Humanos , Epidemias/prevenção & controle , Vacinação , Tempo , Suscetibilidade a Doenças
9.
Pathogens ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37375461

RESUMO

Dengue fever remains a significant public health concern in many tropical and subtropical countries, and there is still a need for a system that can effectively combine global risk assessment with timely incidence forecasting. This research describes an integrated application called PICTUREE-Aedes, which can collect and analyze dengue-related data, display simulation results, and forecast outbreak incidence. PICTUREE-Aedes automatically updates global temperature and precipitation data and contains historical records of dengue incidence (1960-2012) and Aedes mosquito occurrences (1960-2014) in its database. The application utilizes a mosquito population model to estimate mosquito abundance, dengue reproduction number, and dengue risk. To predict future dengue outbreak incidence, PICTUREE-Aedes applies various forecasting techniques, including the ensemble Kalman filter, recurrent neural network, particle filter, and super ensemble forecast, which are all based on user-entered case data. The PICTUREE-Aedes' risk estimation identifies favorable conditions for potential dengue outbreaks, and its forecasting accuracy is validated by available outbreak data from Cambodia.

10.
Sci Rep ; 13(1): 20337, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37990067

RESUMO

African animal trypanosomiasis (AAT) is one of the major constraints to animal health and production in sub-Saharan Africa. To inform AAT control in Uganda and help advance along the progressive control pathway (PCP), we characterized AAT prevalence among eight host species in Uganda and explored factors that influence the prevalence variation between studies. We retrieved AAT prevalence publications (n = 2232) for Uganda (1980-2022) from five life sciences databases, focusing on studies specifying AAT detection methods, sample size, and the number of trypanosome-positive animals. Following PRISMA guidelines, we included 56 publications, and evaluated publication bias by the Luis Furuya-Kanamori (LFK) index. National AAT prevalence under DNA diagnostic methods for cattle, sheep and goats was 22.15%, 8.51% and 13.88%, respectively. Under DNA diagnostic methods, T. vivax was the most common Trypanosoma sp. in cattle (6.15%, 95% CI: 2.91-10.45) while T. brucei was most common among small ruminants (goats: 8.78%, 95% CI: 1.90-19.88, and sheep: 8.23%, 95% CI: 4.74-12.50, respectively). Northern and Eastern regions accounted for the highest AAT prevalence. Despite the limitations of this study (i.e., quality of reviewed studies, underrepresentation of districts/regions), we provide insights that could be used for better control of AAT in Uganda and identify knowledge gaps that need to be addressed to support the progressive control of AAT at country level and other regional endemic countries with similar AAT eco-epidemiology.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Ovinos , Animais Domésticos , Gado , Prevalência , Uganda/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Trypanosoma/genética , Ruminantes , Cabras , DNA
11.
Sci Rep ; 13(1): 2931, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36804990

RESUMO

Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens: Actinobacillus suis, Bordetella bronchiseptica, Escherichia coli, Glaesserella parasuis, Pasteurella multocida, Salmonella spp., and Streptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.


Assuntos
Anti-Infecciosos , Gestão de Antimicrobianos , Animais , Suínos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fazendas , Farmacorresistência Bacteriana , Bactérias , Escherichia coli
12.
bioRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37461554

RESUMO

Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip domain serine proteases (cSPs) and/or their non-catalytic homologs (cSPHs), which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.

13.
J Innate Immun ; 15(1): 680-696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703846

RESUMO

Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.


Assuntos
Anopheles , Serpinas , Animais , Feminino , Imunidade Humoral , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Proteases/genética , Serpinas/genética , Serpinas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
14.
J Theor Biol ; 306: 129-44, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564391

RESUMO

Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and veterinary infrastructures and human morbidity, mortality, and economic endpoints. Furthermore, worldwide attention should be directed towards the broader infection dynamics of RVFV, because suitable host, vector and environmental conditions for additional epidemics likely exist on other continents; including Asia, Europe and the Americas. We propose a new compartmentalized model of RVF and the related ordinary differential equations to assess disease spread in both time and space; with the latter driven as a function of contact networks. Humans and livestock hosts and two species of vector mosquitoes are included in the model. The model is based on weighted contact networks, where nodes of the networks represent geographical regions and the weights represent the level of contact between regional pairings for each set of species. The inclusion of human, animal, and vector movements among regions is new to RVF modeling. The movement of the infected individuals is not only treated as a possibility, but also an actuality that can be incorporated into the model. We have tested, calibrated, and evaluated the model using data from the recent 2010 RVF outbreak in South Africa as a case study; mapping the epidemic spread within and among three South African provinces. An extensive set of simulation results shows the potential of the proposed approach for accurately modeling the RVF spreading process in additional regions of the world. The benefits of the proposed model are twofold: not only can the model differentiate the maximum number of infected individuals among different provinces, but also it can reproduce the different starting times of the outbreak in multiple locations. Finally, the exact value of the reproduction number is numerically computed and upper and lower bounds for the reproduction number are analytically derived in the case of homogeneous populations.


Assuntos
Modelos Biológicos , Febre do Vale de Rift/epidemiologia , Aedes/virologia , Animais , Culex/virologia , Epidemias , Humanos , Incidência , Insetos Vetores/virologia , Gado/virologia , Dinâmica Populacional , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/veterinária , Vírus da Febre do Vale do Rift/isolamento & purificação , África do Sul/epidemiologia
15.
Sci Rep ; 12(1): 2640, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173229

RESUMO

Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those groups that are more vulnerable to infection.


Assuntos
COVID-19/epidemiologia , Imunidade Coletiva , Modelos Imunológicos , SARS-CoV-2/imunologia , Vacinação , Adulto , Fatores Etários , Idoso , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Humanos
16.
Sci Rep ; 12(1): 15679, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127385

RESUMO

As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs.


Assuntos
Epidemias , Febre Aftosa , Animais , Bovinos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Epidemias/veterinária , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Gado
17.
Phys Rev E ; 106(6-1): 064301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671154

RESUMO

In the studies of network structures, much attention has been devoted to developing approaches to reconstruct networks and predict missing links when edge-related information is given. However, such approaches are not applicable when we are only given noisy node activity data with missing values. This work presents an unsupervised learning framework to learn node vectors and construct networks from such node activity data. First, we design a scheme to generate random node sequences from node context sets, which are generated from node activity data. Then, a three-layer neural network is adopted training the node sequences to obtain node vectors, which allow us to construct networks and capture nodes with synergistic roles. Furthermore, we present an entropy-based approach to select the most meaningful neighbors for each node in the resulting network. Finally, the effectiveness of the method is validated through both synthetic and real data.


Assuntos
Algoritmos , Redes Neurais de Computação , Entropia
18.
J R Soc Interface ; 19(188): 20210920, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35285285

RESUMO

After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Pandemias/prevenção & controle , Universidades , Vacinação
19.
J Theor Biol ; 283(1): 136-44, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21663750

RESUMO

Many approaches have recently been proposed to model the spread of epidemics on networks. For instance, the Susceptible/Infected/Recovered (SIR) compartmental model has successfully been applied to different types of diseases that spread out among humans and animals. When this model is applied on a contact network, the centrality characteristics of the network plays an important role in the spreading process. However, current approaches only consider an aggregate representation of the network structure, which can result in inaccurate analysis. In this paper, we propose a new individual-based SIR approach, which considers the whole description of the network structure. The individual-based approach is built on a continuous time Markov chain, and it is capable of evaluating the state probability for every individual in the network. Through mathematical analysis, we rigorously confirm the existence of an epidemic threshold below which an epidemic does not propagate in the network. We also show that the epidemic threshold is inversely proportional to the maximum eigenvalue of the network. Additionally, we study the role of the whole spectrum of the network, and determine the relationship between the maximum number of infected individuals and the set of eigenvalues and eigenvectors. To validate our approach, we analytically study the deviation with respect to the continuous time Markov chain model, and we show that the new approach is accurate for a large range of infection strength. Furthermore, we compare the new approach with the well-known heterogeneous mean field approach in the literature. Ultimately, we support our theoretical results through extensive numerical evaluations and Monte Carlo simulations.


Assuntos
Transmissão de Doença Infecciosa , Epidemias , Modelos Biológicos , Animais , Suscetibilidade a Doenças , Humanos , Cadeias de Markov , Método de Monte Carlo
20.
Phys Rev E ; 104(2-1): 024301, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525660

RESUMO

From social networks to biological networks, different types of interactions among the same set of nodes characterize distinct layers, which are termed multilayer networks. Within a multilayer network, some layers, confirmed through different experiments, could be structurally similar and interdependent. In this paper, we propose a maximum a posteriori-based method to study and reconstruct the structure of a target layer in a multilayer network. Nodes within the target layer are characterized by vectors, which are employed to compute edge weights. Further, to detect structurally similar layers, we propose a method for comparing networks based on the eigenvector centrality. Using similar layers, we obtain the parameters of the conjugate prior. With this maximum a posteriori algorithm, we can reconstruct the target layer and predict missing links. We test the method on two real multilayer networks, and the results show that the maximum a posteriori estimation is promising in reconstructing the target layer even when a large number of links is missing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA