RESUMO
Although L1 sequences are present in the genomes of all placental mammals and marsupials examined to date, their activity was lost in the megabat family, Pteropodidae, â¼24 million years ago. To examine the characteristics of L1s prior to their extinction, we analyzed the evolutionary history of L1s in the genome of a megabat, Pteropus vampyrus, and found a pattern of periodic L1 expansion and quiescence. In contrast to the well-characterized L1s in human and mouse, megabat genomes have accommodated two or more simultaneously active L1 families throughout their evolutionary history, and major peaks of L1 deposition into the genome always involved multiple families. We compared the consensus sequences of the two major megabat L1 families at the time of their extinction to consensus L1s of a variety of mammalian species. Megabat L1s are comparable to the other mammalian L1s in terms of adenosine content and conserved amino acids in the open reading frames (ORFs). However, the intergenic region (IGR) of the reconstructed element from the more active family is dramatically longer than the IGR of well-characterized human and mouse L1s. We synthesized the reconstructed element from this L1 family and tested the ability of its components to support retrotransposition in a tissue culture assay. Both ORFs are capable of supporting retrotransposition, while the IGR is inhibitory to retrotransposition, especially when combined with either of the reconstructed ORFs. We dissected the inhibitory effect of the IGR by testing truncated and shuffled versions and found that length is a key factor, but not the only one affecting inhibition of retrotransposition. Although the IGR is inhibitory to retrotransposition, this inhibition does not account for the extinction of L1s in megabats. Overall, the evolution of the L1 sequence or the quiescence of L1 is unlikely the reason of L1 extinction.
Assuntos
Quirópteros/genética , Evolução Molecular , Elementos Nucleotídeos Longos e Dispersos/genética , Filogenia , Animais , DNA Intergênico/genética , Genoma , Humanos , Camundongos , Fases de Leitura Aberta/genéticaRESUMO
BACKGROUND: Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia's karyotypic evolution. RESULTS: The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty-nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. CONCLUSIONS: Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and ecology.
Assuntos
Evolução Biológica , Quirópteros/classificação , Quirópteros/genética , Cromossomos de Mamíferos , Animais , Hibridização In Situ , Cariótipo , Modelos Genéticos , FilogeniaRESUMO
The ΦX174 reduction effect describes a plasmid-based inhibitory phenomenon that mimics the superinfection inhibition found in wild phage populations. In this effect, when a portion of the ΦX174 genome - the 3' end of the pilot protein gene (H), the 5' end of the replication gene (A), and the H-A intergenic region - is present on a plasmid in the host cell, almost complete protection from phage infection occurs. Here we demonstrate that only the phage pilot protein H portion of the plasmid is sufficient for the observed inhibition, that protein synthesis is necessary for inhibition to occur, that inserting the entire H gene in the plasmid may also impart a blocking effect, and that partial to complete recovery from this inhibition is possible with minimal viral evolution.
RESUMO
Long interspersed nuclear element 1 (LINE-1; L1) retrotransposons are the most common retroelements in mammalian genomes. Unlike individual families of endogenous retroviruses (ERVs), they have remained active throughout the mammalian radiation and are responsible for most of the retroelement movement and much genome rearrangement within mammals. They can be viewed as occupying a substantial niche within mammalian genomes. Our previous demonstration that L1s and B1 short interspersed nuclear elements (SINEs) are inactive in a group of South American rodents led us to ask if other elements have amplified to fill the empty niche. We identified a novel and highly active family of ERVs (mysTR). To determine whether loss of L1 activity was correlated with expansion of mysTR, we examined mysTR activity in four South American rodent species that have lost L1 and B1 activity and four sister species with active L1s. The copy number of recent mysTR insertions was extremely high, with an average of 4,200 copies per genome. High copy numbers exist in both L1-active and L1-extinct species, so the mysTR expansion appears to have preceded the loss of both SINE and L1 activity rather than to have filled an empty niche created by their loss. It may be coincidental that two unusual genomic events--loss of L1 activity and massive expansion of an ERV family--occur in the same group of mammals. Alternatively, it is possible that this large ERV expansion set the stage for L1 extinction.
Assuntos
Retrovirus Endógenos/genética , Genoma , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Roedores/genética , Roedores/virologia , Elementos Nucleotídeos Curtos e Dispersos/genética , Animais , Southern Blotting , DNA/análise , DNA/genética , Retrovirus Endógenos/classificação , Mamíferos , Filogenia , Reação em Cadeia da PolimeraseRESUMO
In microbial communities, viruses compete with each other for host cells to infect. As a consequence of competition for hosts, viruses evolve inhibitory mechanisms to suppress their competitors. One such mechanism is superinfection exclusion, in which a preexisting viral infection prevents a secondary infection. The bacteriophage ΦX174 exhibits a potential superinfection inhibition mechanism (in which secondary infections are either blocked or resisted) known as the reduction effect. In this auto-inhibitory phenomenon, a plasmid containing a fragment of the ΦX174 genome confers resistance to infection among cells that were once permissive to ΦX174. Taking advantage of this plasmid system, we examine the inhibitory properties of the ΦX174 reduction effect on a range of wild ΦX174-like phages. We then assess how closely the reduction effect in the plasmid system mimics natural superinfection inhibition by carrying out phage-phage competitions in continuous culture, and we evaluate whether the overall competitive advantage can be predicted by phage fitness or by a combination of fitness and reduction effect inhibition. Our results show that viral fitness often correctly predicts the winner. However, a phage's reduction sequence also provides an advantage to the phage in some cases, modulating phage-phage competition and allowing for persistence where competitive exclusion was expected. These findings provide strong evidence for more complex dynamics than were previously thought, in which the reduction effect may inhibit fast-growing viruses, thereby helping to facilitate coexistence.
Assuntos
Bacteriófagos/genética , Bacteriófagos/patogenicidade , Ecologia , Superinfecção/virologia , Vírus/genética , DNA Viral , Evolução Molecular , Aptidão Genética , Humanos , Superinfecção/prevenção & controleRESUMO
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Assuntos
Bacteriófago phi X 174/genética , Códon , Genoma Viral , Epistasia Genética , Genes Virais , Aptidão Genética , Modelos Genéticos , Seleção Genética , Vacinas ViraisRESUMO
LINE-1 (L1) retrotransposons are the most abundant type of mammalian retroelement. They have profound effects on genome plasticity and have been proposed to fulfill essential host functions, yet it remains unclear where they lie on the spectrum from parasitism to mutualism. Their ubiquity makes it difficult to determine the extent of their effects on genome evolution and gene expression because of the relative dearth of animal models lacking L1 activity. We have isolated L1 sequences from 11 megabat species by a method that enriches for recently inserted L1s and have done a bioinformatic examination of L1 sequences from a 12th species whose genome was recently shotgun sequenced. An L1 extinction event appears to have occurred at least 24 million years ago (MYA) in an ancestor of the megabats. The ancestor was unusual in having maintained two highly divergent long-term L1 lineages with different levels of activity, which appear, on an evolutionary scale, to have simultaneously lost that activity. These megabat species can serve as new animal models to ask what effect loss of L1 activity has on mammalian genome evolution and gene expression.
Assuntos
Quirópteros/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Animais , Southern Blotting , Biologia Computacional , Sequência Conservada , DNA/análise , DNA/genética , Variação Genética , Genoma , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNARESUMO
BACKGROUND: L1 retrotransposons have co-evolved with their mammalian hosts for the entire history of mammals and currently compose ~ 20% of a mammalian genome. B1 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of rodents since their radiation. L1s were found to have lost their activity in a group of South American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. RESULTS: Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine rodents and show that L1 activity continued until after the L1-extinct clade and the basal group diverged. After the split, L1 had a small burst of activity in the former group, followed by extinction. In the basal group, activity was initially low but was followed by a dramatic increase in L1 activity. We found the last wave of B1 retrotransposition was large and probably preceded the split between the two rodent clades. CONCLUSIONS: Given that L1s had been steadily retrotransposing during the time corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 activity may have contributed to L1 extinction both by competition with L1 and by putting strong selective pressure on the host to control retrotransposition.
RESUMO
L1s are transposable elements that move by a copy-and-paste mechanism that continuously increases their copy number in the genome, such that each genome has a record of the L1 history in that host lineage. They make up about 20% of the genomes of eutherian mammals and have played a major role in shaping genome evolution. Chiroptera has the lowest average genome size among mammalian orders and the only documented case of L1 extinction affecting an entire mammalian family. Herein, L1 activity and extinction are characterized in all families of the order Chiroptera using a method that enriches for the youngest lineages of L1s in the genome. In addition to the previously reported L1 extinction in Pteropodidae, L1 extinction was documented to occur in Mormoops blainvilli, but this event did not affect all species of Mormoopidae. Further, there was no evidence of concordance between the evolution of L1s and their chiropteran host. There were two L1 lineages present before the divergence of all extant bats. Both lineages are extinct in the Pteropodidae. One or the other L1 lineage is extinct in almost all bat families, but Taphozous melanopogon maintains active members of both. Most intriguingly, some families within the Rhinolophoidea retain one active L1 lineage whereas other families retain the other, creating a deep discontinuity between L1 phylogeny and chiropteran phylogeny. These results indicate that there have been numerous losses of active L1 lineages over the history of chiropteran evolution, but that all chiropteran families except Pteropodidae have retained L1 activity.
RESUMO
Parallelism is important because it reveals how inherently stochastic adaptation is. Even as we come to better understand evolutionary forces, stochasticity limits how well we can predict evolutionary outcomes. Here we sought to quantify parallelism and some of its underlying causes by adapting a bacteriophage (ID11) with nine different first-step mutations, each with eight-fold replication, for 100 passages. This was followed by whole-genome sequencing five isolates from each endpoint. A large amount of variation arose-281 mutational events occurred representing 112 unique mutations. At least 41% of the mutations and 77% of the events were adaptive. Within wells, populations generally experienced complex interference dynamics. The genome locations and counts of mutations were highly uneven: mutations were concentrated in two regulatory elements and three genes and, while 103 of the 112 (92%) of the mutations were observed in ≤4 wells, a few mutations arose many times. 91% of the wells and 81% of the isolates had a mutation in the D-promoter. Parallelism was moderate compared to previous experiments with this system. On average, wells shared 27% of their mutations at the DNA level and 38% when the definition of parallel change is expanded to include the same regulatory feature or residue. About half of the parallelism came from D-promoter mutations. Background had a small but significant effect on parallelism. Similarly, an analyses of epistasis between mutations and their ancestral background was significant, but the result was mostly driven by four individual mutations. A second analysis of epistasis focused on de novo mutations revealed that no isolate ever had more than one D-promoter mutation and that 56 of the 65 isolates lacking a D-promoter mutation had a mutation in genes D and/or E. We assayed time to lysis in four of these mutually exclusive mutations (the two most frequent D-promoter and two in gene D) across four genetic backgrounds. In all cases lysis was delayed. We postulate that because host cells were generally rare (i.e., high multiplicity of infection conditions developed), selection favored phage that delayed lysis to better exploit their current host (i.e., 'love the one you're with'). Thus, the vast majority of wells (at least 64 of 68, or 94%) arrived at the same phenotypic solution, but through a variety of genetic changes. We conclude that answering questions about the range of possible adaptive trajectories, parallelism, and the predictability of evolution requires attention to the many biological levels where the process of adaptation plays out.