Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649884

RESUMO

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Assuntos
Processamento Alternativo , Reparo do DNA , Epigênese Genética , Instabilidade Genômica , Histonas/fisiologia , Anáfase , Animais , Linhagem Celular , Instabilidade Cromossômica , Cromossomos Humanos X , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Mol Cell ; 69(1): 36-47.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249653

RESUMO

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.


Assuntos
Carcinogênese/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Histonas/genética , Recombinação Homóloga/genética , Proteína BRCA1/metabolismo , Divisão Celular/genética , Células Cultivadas , Senescência Celular/genética , Instabilidade Genômica/fisiologia , Humanos , Transdução de Sinais/genética
3.
Nucleic Acids Res ; 50(9): 5111-5128, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524559

RESUMO

During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Origem de Replicação , Sirtuína 1 , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
4.
Carcinogenesis ; 37(10): 929-40, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27492056

RESUMO

Endosulfan (ES) is an organochlorine pesticide, speculated to be associated with chromosomal abnormalities and diseases in humans. However, very little is known about the mechanism of its genotoxicity. Using in vivo, ex vivo and in vitro model systems, we show that exposure to ES induces reactive oxygen species (ROS) in a concentration and time-dependent manner. The generation of ROS results in DNA double-strand breaks either directly or in a replication-dependent manner, both in mice and human cells. Importantly, ES-induced DNA damage evokes DNA damage response, resulting in elevated levels of classical non-homologous DNA endjoining (NHEJ), the predominant double-strand break repair pathway in higher eukaryotes. Sequence analyses of NHEJ junctions revealed that ES treatment results in extensive processing of broken DNA, culminating in increased and long junctional deletions, thereby favoring erroneous repair. We also find that exposure to ES leads to significant increase in microhomology-mediated end joining (MMEJ), a LIGASE III-dependent alternative repair pathway. Therefore, we demonstrate that ES induces DNA damage and genomic instability, alters DNA damage response thereby promoting erroneous DNA repair.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Endossulfano/toxicidade , Instabilidade Genômica/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/genética , Humanos , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897168

RESUMO

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Microambiente Tumoral , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Células Neuroendócrinas/patologia , Células Neuroendócrinas/metabolismo , Feminino , Masculino , Prognóstico
6.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998365

RESUMO

In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.


Assuntos
Estruturas R-Loop , Sirtuína 1 , Humanos , DNA Ribossômico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Replicação do DNA/genética , Envelhecimento/genética
7.
EMBO Mol Med ; 15(8): e17313, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491889

RESUMO

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
8.
Front Genet ; 12: 746380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745220

RESUMO

Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.

9.
Nat Commun ; 12(1): 3448, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103496

RESUMO

Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.


Assuntos
Replicação do DNA , Origem de Replicação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Genoma Humano , Humanos , Mitose/efeitos dos fármacos , Modelos Biológicos , Pirimidinas/farmacologia , Origem de Replicação/genética
10.
Cell Rep ; 33(3): 108296, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086069

RESUMO

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer (SCLC) cell lines, providing a resource for research into this "recalcitrant cancer." We demonstrate the reproducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.


Assuntos
Mineração de Dados/métodos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Algoritmos , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Genômica/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fenômenos Farmacológicos e Toxicológicos , Reprodutibilidade dos Testes , Software , Fatores de Transcrição/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1731)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28847825

RESUMO

Accurate maintenance of genomic as well as epigenomic integrity is critical for proper cell and organ function. Continuous exposure to DNA damage is, thus, often associated with malignant transformation and degenerative diseases. A significant, chronic threat to genome integrity lies in the process of transcription, which can result in the formation of potentially harmful RNA : DNA hybrid structures (R-loops) and has been linked to DNA damage accumulation as well as dynamic chromatin reorganization. In sharp contrast, recent evidence suggests that active transcription, the resulting transcripts as well as R-loop formation can play multi-faceted roles in maintaining and restoring genome integrity. Here, we will discuss the emerging contributions of transcription as both a source of DNA damage and a mediator of DNA repair. We propose that both aspects have significant implications for genome maintenance, and will speculate on possible long-term consequences for the epigenetic integrity of transcribing cells.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.


Assuntos
Dano ao DNA , Reparo do DNA , Epigênese Genética , Genoma , Transcrição Gênica
13.
J Biosci ; 42(1): 149-153, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28229974

RESUMO

Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas of active exposure. However, the molecular insights to its mechanism of action remain poorly understood. In two recent studies, our group investigated the physiological and molecular aspects of endosulfan action using in vitro, ex vivo and in vivo analyses. The results showed that apart from reducing fertility levels in male animals, Endosulfan induced DNA damage that triggers compromised DNA damage response leading to undesirable processing of broken DNA ends. In this review, pesticide use especially of Endosulfan in the Indian scenario is summarized and the importance of our findings, especially the rationalized use of pesticides in the future, is emphasized.


Assuntos
Dano ao DNA/efeitos dos fármacos , Endossulfano/toxicidade , Hidrocarbonetos Clorados/toxicidade , Praguicidas/toxicidade , Animais , Humanos , Masculino , Mamíferos , Poluentes Químicos da Água/toxicidade
14.
Toxicol Lett ; 274: 8-19, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389379

RESUMO

BACKGROUND: Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. OBJECTIVE: The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats. METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m3 stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. RESULTS: Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. CONCLUSION: The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis. Activation of DDR and the ROS-sensitive Nrf2 and NFκB signalling pathways may be key molecular events that mediate adaptive cellular response to welding fume exposure.


Assuntos
Poluentes Atmosféricos , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Soldagem , Animais , Antioxidantes/metabolismo , Masculino , Metais/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Fatores de Transcrição/genética
15.
Mol Biol Cell ; 27(2): 223-35, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26609070

RESUMO

Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Mitocondrial/genética , Animais , DNA Ligase Dependente de ATP/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ratos , Reparo de DNA por Recombinação
16.
J Mol Biol ; 417(3): 197-211, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22306462

RESUMO

Repair of DNA double-strand breaks (DSBs) is crucial for maintaining genomic integrity during the successful development of a fertilized egg into a whole organism. To date, the mechanism of DSB repair in postimplantation embryos has been largely unknown. In the present study, using a cell-free repair system derived from the different embryonic stages of mice, we find that canonical nonhomologous end joining (NHEJ), one of the major DSB repair pathways in mammals, is predominant at 14.5 day of embryonic development. Interestingly, all four types of DSBs tested were repaired by ligase IV/XRCC4 and Ku-dependent classical NHEJ. Characterization of end-joined junctions and expression studies further showed evidences for canonical NHEJ. Strikingly, in contrast to the above, we observed noncanonical end joining accompanied by DSB resection, dependent on microhomology and ligase III in 18.5-day embryos. Interestingly, we observed an elevated expression of CtIP, MRE11, and NBS1 at this stage, suggesting that it could act as a switch between classical end joining and microhomology-mediated end joining at later stages of embryonic development. Thus, our results establish for the first time the existence of both canonical and alternative NHEJ pathways during the postimplantation stages of mammalian embryonic development.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Embrião de Mamíferos/fisiologia , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homóloga a MRE11 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Gravidez , Homologia de Sequência do Ácido Nucleico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA