Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 371(2): 293-307, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29178040

RESUMO

Three-dimensional cultures of primary epithelial cells including organoids, enteroids and epithelial spheroids have become increasingly popular for studies of gastrointestinal development, mucosal immunology and epithelial infection. However, little is known about the behavior of these complex cultures in their three-dimensional culture matrix. Therefore, we performed extended time-lapse imaging analysis (up to 4 days) of human gastric epithelial spheroids generated from adult tissue samples in order to visualize the dynamics of the spheroids in detail. Human gastric epithelial spheroids cultured in our laboratory grew to an average diameter of 443.9 ± 34.6 µm after 12 days, with the largest spheroids reaching diameters of >1000 µm. Live imaging analysis revealed that spheroid growth was associated with cyclic rupture of the epithelial shell at a frequency of 0.32 ± 0.1/day, which led to the release of luminal contents. Spheroid rupture usually resulted in an initial collapse, followed by spontaneous re-formation of the spheres. Moreover, spheroids frequently rotated around their axes within the Matrigel matrix, possibly propelled by basolateral pseudopodia-like formations of the epithelial cells. Interestingly, adjacent spheroids occasionally underwent luminal fusion, as visualized by injection of individual spheroids with FITC-Dextran (4 kDa). In summary, our analysis revealed unexpected dynamics in human gastric spheroids that challenge our current view of cultured epithelia as static entities and that may need to be considered when performing spheroid infection experiments.


Assuntos
Células Epiteliais/patologia , Imageamento Tridimensional , Rotação , Esferoides Celulares/patologia , Estômago/patologia , Adulto , Fusão Celular , Proliferação de Células , Colágeno/metabolismo , Combinação de Medicamentos , Células Epiteliais/ultraestrutura , Feminino , Humanos , Laminina/metabolismo , Masculino , Fusão de Membrana , Pessoa de Meia-Idade , Organoides/patologia , Fenótipo , Proteoglicanas/metabolismo , Ruptura , Ruptura Espontânea , Esferoides Celulares/ultraestrutura , Cicatrização
2.
Nat Commun ; 14(1): 6882, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898615

RESUMO

Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.


Assuntos
COVID-19 , Quirópteros , Interferon Tipo I , Vírus , Animais , SARS-CoV-2 , Jamaica , Antivirais , Organoides
3.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765598

RESUMO

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

4.
Front Pharmacol ; 12: 707891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552484

RESUMO

Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.

5.
J Leukoc Biol ; 101(5): 1169-1180, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28087652

RESUMO

CD103 (αE integrin) is an important dendritic cell (DC) marker that characterizes functionally distinct DC subsets in mice and humans. However, the mechanism by which CD103 expression is regulated in human DCs and the role of CD103 for DC function are not very well understood. Here, we show that retinoic acid (RA) treatment of human monocyte-derived DCs (MoDCs) increased the ability of the DCs to synthesize RA and induced MoDC expression of CD103 and ß7 at the mRNA and protein level. In contrast, RA was unable to induce the expression of CD103 in primary human DCs isolated from the gastric mucosa. Inhibition of TGF-ß signaling in MoDCs down-regulated RA-induced CD103 expression, indicating that TGF-ß-dependent pathways contribute to the induction of CD103. Conversely, when RA-treated MoDCs were stimulated with live Helicobacter pylori, commensal bacteria, LPS, or a TLR2 agonist, the RA-induced up-regulation of CD103 and ß7 integrin expression was completely abrogated. To determine whether CD103 expression impacts DC priming of CD4+ T cells, we next investigated the ability of CD103+ and CD103─ DCs to induce mucosal homing and T cell proliferation. Surprisingly, RA treatment of DCs enhanced both α4ß7 expression and proliferation in cocultured T cells, but no difference was seen between RA-treated CD103+ and CD103─ DCs. In summary, our data demonstrate that RA, bacterial products, and the tissue environment all contribute to the regulation of CD103 on human DCs and that DC induction of mucosal homing in T cells is RA dependent but not CD103 dependent.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Cadeias alfa de Integrinas/imunologia , Cadeias beta de Integrinas/imunologia , Monócitos/efeitos dos fármacos , Tretinoína/farmacologia , Antígenos CD/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Regulação da Expressão Gênica , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/imunologia , Humanos , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Integrinas/genética , Integrinas/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/citologia , Monócitos/imunologia , Monócitos/microbiologia , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Tretinoína/imunologia , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA