Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(15): 10434-10447, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37467464

RESUMO

We, herein, describe a copper-mediated domino CuAAC intramolecular selanylation for the synthesis of unprecedented fused benzo[4,5][1,3]selenazolo[3,2-c][1,2,3]triazoles from 1,2-bis(2-azidoaryl)diselenides and terminal alkynes under microwave irradiation. This is the seminal method for the synthesis of these fused heterocycles, and it proceeds under mild conditions, tolerates several functional groups, and can be carried out using environmentally benign solvents such as dimethyl carbonate. This transformation has been successfully extended to TMS-protected alkynes and to bioactive alkynes. A plausible reaction mechanism is proposed based on several control experiments and previous reports.

2.
J Org Chem ; 88(19): 14033-14047, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712931

RESUMO

The direct and selective conversion of a C-H bond into a C-Se bond remains a significant challenge, which is even more intricate with substrates having an innate regioselectivity under several reaction conditions, such as chalcogenophenes. We overrode their selectivity toward selanylation using palladium, copper, and the 2-(methylthio)amide directing group. This chelation-assisted direct selanylation was also suitable for mono and double ortho functionalization of arenes. The mechanistic studies indicate high-valent Pd(IV) species in the catalytic cycle, a reversible C-H activation step, and Cu(II) as a sequestering agent for organoselenide byproducts.

3.
Org Biomol Chem ; 20(31): 6072-6177, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904472

RESUMO

Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations represent a breakthrough in modern synthetic organic chemistry, as they offer unusual reactivity patterns and avoid pre-functionalization of the starting materials. Despite inherent challenges in activating/functionalizing unreactive C-H bonds, a considerable number of different transition metals have shown the ability to selectively catalyze these processes toward C-S bond formation. In this sense, this review article covers the development and mechanistic analysis of the direct sulfanylation of Csp3-H and Csp2-H bonds through transition metal catalysed reactions in the last two decades, providing an essential guide for organic chemists working on this research area.


Assuntos
Elementos de Transição , Catálise , Elementos de Transição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA