Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 8(8): 4635-42, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26854095

RESUMO

The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.

2.
Langmuir ; 25(8): 4760-6, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19265409

RESUMO

A simple, inexpensive route for the fabrication of a superhydrophobic metal surface is described. Carbon-carbon composite paper (Toray TGP-H) is electroplated with copper. The copper layer is made hydrophobic by self-assembling a monolayer of dodecanethiol. The surface topography required to induce superhydrophobic behavior is achieved by varying the plating bath composition (Cl-, PEG, and SPS additives) and the time of deposition (effective thickness of the Cu layer). The surface morphology created by the original arrangement of the carbon fibers in the Toray paper (diameter 8 microm, spacing 30 microm) does not produce superhydrophobic behavior. This is true for both continuous and incomplete copper coatings. Truly superhydrophobic behavior (large contact angles, 160-165 degrees, and very small contact angle hysteresis, 2 to 3 degrees) is achieved when a continuous copper layer is deposited on the carbon fibers and also a second micrometer-range roughness is developed as a result of the formation of small copper crystallites (size approximately 1 microm).

3.
Langmuir ; 24(21): 12710-6, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18834162

RESUMO

The classic description of the rate of capillary rise given by the Washburn equation, which assumes that the contact angle preserves the equilibrium value at all times, has been recently questioned in the light of the known experimental dependence of the dynamic contact angle on the velocity of the contact line. For a number of such proposed functions of velocity for the dynamic contact angle, we analyze the resulting dependences of the contact angle and of the time of rise, respectively, on the height of the capillary rise. By applying our results to the particular cases of a high-viscosity silicone oil and water, respectively, in a glass capillary, we show that, in general, strong similarities arise between the various approaches and the classic theory in what concerns the time dependence of the capillary rise, which explains the lack of consistent experimental evidence for deviations in the rate of capillary rise from the Washburn equation. However, for a strong dependency of the contact angle on the velocity in the range of small velocities, as in the case of water on glass, one of the models predicts significant deviations even for the time dependence of the capillary rise. Moreover, our results show that the time or height dependence of the contact angle during the capillary rise can clearly discriminate between the various models.

4.
Langmuir ; 21(13): 5790-4, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15952824

RESUMO

The preparation of patterned inorganic surfaces consisting of silica (SiO2) and titania (TiO2) is described. The approach is based on a combination of standard photolithography and plasma-enhanced chemical vapor deposition. Silicon wafers coated with a titania layer (40 nm) were patterned by use of a positive photoresist and then a thin silica layer (10-40 nm) was plasma-deposited. The photoresist was removed by decomposition at 800 degrees C. The inorganic patterned surfaces possessed excellent high-temperature resistance. Since the silica patches were effectively dehydroxylated during the thermal treatment, the patterns consisted of moderately hydrophobic (silica) and hydrophilic (titania) domains with a significant wettability contrast (40 degrees for water). The surface was further hydrophobized with a self-assembled monolayer of fluoroalkylsilane (FAS) and exposed to UV light. The FAS layer was locally oxidized on the TiO2 patches and the wettability contrast was maximized to 120 degrees (the highest possible value on smooth surfaces).

5.
Langmuir ; 21(6): 2400-7, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15752031

RESUMO

The surface properties of silica and titania are mainly determined by the presence, density, and type of terminal hydroxyl groups (Si-OH "silanol" and Ti-OH "titanol"). Thermal treatment at elevated temperatures causes dehydroxylation on both surfaces, confirmed by streaming potential and ToF-SIMS measurements. The magnitude of the zeta potential markedly decreases after heat treatment, but the IEP is not affected. The intensity ratio MOH(+)/M(+) (M = Si or Ti), which reflects the surface density of OH groups, also decreases noticeably after high-temperature treatment. The mechanism is condensation of adjacent silanol/titanol groups into siloxane/titanoxane bonds. Ultraviolet light (lambda = 254 nm) has little effect on silica but rapidly induces hydrophilicity on titania surfaces. There is a strong correlation between the amount of hydrocarbons adsorbed on the surface and the density of titanol groups (thence the water contact angle). The effect of UV radiation can be entirely attributed to photolytic decomposition of organic contaminants. Dehydroxylated titania and silica (at 1050 degrees C) show very different wetting behavior: silica is moderately hydrophobic (water contact angle of about 40 degrees), while titania is hydrophilic (0 degrees). This dissimilarity can be explained with a simple model estimating the van der Waals and acid-base interfacial interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA