Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(12): 3085-3090, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265087

RESUMO

Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.


Assuntos
Aprendizagem Baseada em Problemas/normas , Ciência/educação , Ensino/normas , Humanos , Som , Estudantes , Tecnologia , Universidades/normas
2.
CBE Life Sci Educ ; 21(4): ar72, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154117

RESUMO

We explored the impacts of a mathematics prerequisite on student success in Introductory Biology, focusing on students historically underserved in science, technology, engineering, and mathematics (STEM). Specifically, we studied Introductory Biology student outcomes 5 years before and 6 years after adding the prerequisite. Students who had not previously passed Intermediate Algebra had a 54.91% chance of passing Introductory Biology, compared with a ​​69.25% chance for students who had passed this math course. Furthermore, we found a disproportionate benefit of passing the math course for Pell Grant recipients. When considering pre- versus post-prerequisite terms of Introductory Biology, we found pass rates were significantly higher after the mathematics prerequisite was required, but grades were not. After the mathematics prerequisite, enrollments in Introductory Biology temporarily decreased in comparison to a similar chemistry course and the college's overall enrollments, a potential cost to students. Pell Grant recipients and women took Introductory Biology at the same rate as before, and contrary to our hypothesis, we saw the proportion of persons excluded due to ethnicity or race (PEER) students enrolled in Introductory Biology was higher after the implementation. This study provides a model for assessing prerequisites in a local context and contributes evidence that mathematical prerequisites can benefit students.


Assuntos
Biologia , Estudantes , Biologia/educação , Currículo , Avaliação Educacional , Feminino , Humanos , Matemática
3.
CBE Life Sci Educ ; 18(3): ar47, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31469624

RESUMO

Instructor Talk-noncontent language used by instructors in classrooms-is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy. We observed widespread use of Instructor Talk with variation in the amount and category type used. The vast majority of Instructor Talk could be characterized using the originally published Instructor Talk framework, suggesting the robustness of this framework. Additionally, a new form of Instructor Talk-Negatively Phrased Instructor Talk, language that may discourage students or distract from the learning process-was detected in these novel course contexts. Finally, the emergent sampling strategy described here may allow investigation of Instructor Talk in even larger numbers of courses across institutions and disciplines. Given its widespread use, potential influence on students in learning environments, and ability to be sampled, Instructor Talk may be a key variable to consider in future research on teaching and learning in higher education.


Assuntos
Biologia/educação , Docentes , Ensino , Currículo , Coleta de Dados , Humanos , Aprendizagem , Estudantes
4.
CBE Life Sci Educ ; 17(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29378751

RESUMO

Scientists and educators travel great distances, spend significant time, and dedicate substantial financial resources to present at conferences. This highlights the value placed on conference interactions. Despite the importance of conferences, very little has been studied about what is learned from the presentations and how presenters can effectively achieve their goals. This essay identifies several challenges presenters face when giving conference presentations and discusses how presenters can use the tenets of scientific teaching to meet these challenges. We ask presenters the following questions: How do you engage the audience and promote learning during a presentation? How do you create an environment that is inclusive for all in attendance? How do you gather feedback from the professional community that will help to further advance your research? These questions target three broad goals that stem from the scientific teaching framework and that we propose are of great importance at conferences: learning, equity, and improvement. Using a backward design approach, we discuss how the lens of scientific teaching and the use of specific active-learning strategies can enhance presentations, improve their utility, and ensure that a presentation is broadly accessible to all audience members.


Assuntos
Congressos como Assunto , Aprendizagem , Ciência/educação , Retroalimentação , Objetivos , Humanos , Aprendizagem Baseada em Problemas
5.
CBE Life Sci Educ ; 17(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29326102

RESUMO

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Assuntos
Biologia/educação , Desenvolvimento de Programas , Ensino , Docentes , Objetivos , Humanos , Motivação , Aprendizagem Baseada em Problemas , Estudantes , Inquéritos e Questionários
6.
CBE Life Sci Educ ; 16(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450448

RESUMO

Nearly half of all undergraduates are enrolled at community colleges (CCs), including the majority of U.S. students who represent groups underserved in the sciences. Yet only a small minority of studies published in discipline-based education research journals address CC biology students, faculty, courses, or authors. This marked underrepresentation of CC biology education research (BER) limits the availability of evidence that could be used to increase CC student success in biology programs. To address this issue, a diverse group of stakeholders convened at the Building Capacity for Biology Education Research at Community Colleges meeting to discuss how to increase the prevalence of CC BER and foster participation of CC faculty as BER collaborators and authors. The group identified characteristics of CCs that make them excellent environments for studying biology teaching and learning, including student diversity and institutional cultures that prioritize teaching, learning, and assessment. The group also identified constraints likely to impede BER at CCs: limited time, resources, support, and incentives, as well as misalignment between doing research and CC faculty identities as teachers. The meeting culminated with proposing strategies for faculty, administrators, journal editors, scientific societies, and funding agencies to better support CC BER.


Assuntos
Biologia/educação , Docentes , Pesquisa , Estudantes , Fortalecimento Institucional , Humanos , Instituições Acadêmicas
7.
CBE Life Sci Educ ; 14(4): ar43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26582237

RESUMO

Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create.


Assuntos
Biologia/educação , Avaliação Educacional , Tecnologia Educacional/métodos , Docentes de Medicina , Aprendizagem Baseada em Problemas/métodos , Currículo , Feminino , Humanos , Relações Interprofissionais , Masculino , Estudantes de Medicina
8.
CBE Life Sci Educ ; 12(4): 586-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24297286

RESUMO

Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.


Assuntos
Biologia/educação , Estudantes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA