Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928061

RESUMO

We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.


Assuntos
Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Mitocôndrias , Monócitos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mitocôndrias/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791118

RESUMO

Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.


Assuntos
Diferenciação Celular , Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Nucleofosmina , Proteômica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Diferenciação Celular/genética , Proteômica/métodos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Monócitos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto
3.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073480

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.


Assuntos
Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteômica , Via de Sinalização Wnt , Idoso , Células da Medula Óssea/citologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoblastos/citologia
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957646

RESUMO

With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Prognóstico , Robótica/instrumentação , Robótica/métodos , Fluxo de Trabalho
5.
Br J Cancer ; 121(7): 545-555, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31413318

RESUMO

BACKGROUND: Resistance to temozolomide (TMZ) is due in part to enhanced DNA repair mediated by high expression of O6-methyl guanine DNA methyltransferase (MGMT) that is often characterised by unmethylated promoter. Here, we investigated pre-treatment of glioblastoma (GBM) cells with the 26S-proteasome inhibitor bortezomib (BTZ) as a strategy to interfere with MGMT expression and thus sensitise them to TMZ. METHODS: Cell lines and patient GBM-derived cells were examined in vitro, and the latter also implanted orthotopically into NOD-SCID C.B.-Igh-1b/lcrTac-Prkdc mice to assess efficacy and tolerability of BTZ and TMZ combination therapy. MGMT promoter methylation was determined using pyrosequencing and PCR, protein signalling utilised western blotting while drug biodistribution was examined by LC-MS/MS. Statistical analysis utilised Analysis of variance and the Kaplan-Meier method. RESULTS: Pre-treatment with BTZ prior to temozolomide killed chemoresistant GBM cells with unmethylated MGMT promoter through MGMT mRNA and protein depletion in vitro without affecting methylation. Chymotryptic activity was abolished, processing of NFkB/p65 to activated forms was reduced and corresponded with low MGMT levels. BTZ crossed the blood-brain barrier, diminished proteasome activity and significantly prolonged animal survival. CONCLUSION: BTZ chemosensitized resistant GBM cells, and the schedule may be amenable for temozolomide refractory patients with unmethylated MGMT promoter.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Temozolomida/administração & dosagem , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/diagnóstico por imagem , Glioblastoma/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Metilação , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , O(6)-Metilguanina-DNA Metiltransferase/efeitos dos fármacos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fator de Transcrição RelA/metabolismo
6.
Mediators Inflamm ; 2018: 9787128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150896

RESUMO

Certain cytokines modulate the expression of insulin-like growth factor- (IGF-) I. Since IL-4 and IGF-I promote growth of the protozoan Leishmania major, we here addressed their interaction in downregulating the expression of Igf-I mRNA using small interfering RNA (siRNA) in Leishmania major-infected macrophages. Parasitism was decreased in the siRNA-treated cells compared with the nontreated cells, reversed by the addition of recombinant IGF-I (rIGF-I). In IL-4-stimulated macrophages, parasitism and the Igf-I mRNA amount were increased, and the effects were nullified upon siRNA transfection. IGF-I downregulation inhibited both parasite and macrophage arginase activation even in IL-4-stimulated cells. Searching for intracellular signaling components shared by IL-4 and IGF-I, upon siRNA transfection, phosphorylated p44, p38, and Akt proteins were decreased, affecting the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. In L. major-infected C57BL6-resistant mice, the preincubation of the parasite with rIGF-I changed the infection profile to be similar to that of susceptible mice. We conclude that IGF-I constitutes an effector element of IL-4 involving the PI3K/Akt pathway during L. major infection.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-4/farmacologia , Leishmania major/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Fator de Crescimento Insulin-Like I/genética , Leishmaniose Cutânea/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7
7.
Int J Mol Sci ; 19(2)2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29462984

RESUMO

Platelet activation contributes to normal haemostasis but also to pathologic conditions like stroke and cardiac infarction. Signalling by cGMP and cAMP inhibit platelet activation and are therefore attractive targets for thrombosis prevention. However, extensive cross-talk between the cGMP and cAMP signalling pathways in multiple tissues complicates the selective targeting of their activities. We have used mathematical modelling based on experimental data from the literature to quantify the steady state behaviour of nitric oxide (NO)/cGMP/cAMP signalling in platelets. The analysis provides an assessment of NO-induced cGMP synthesis and PKG activation as well as cGMP-mediated cAMP and PKA activation though modulation of phosphodiesterase (PDE2 and 3) activities. Both one- and two-compartment models of platelet cyclic nucleotide signalling are presented. The models provide new insight for understanding how NO signalling to cGMP and indirectly cAMP, can inhibit platelet shape-change, the initial step of platelet activation. Only the two-compartment models could account for the experimental observation that NO-mediated PKA activation can occur when the bulk platelet cAMP level is unchanged. The models revealed also a potential for hierarchical interplay between the different platelet phosphodiesterases. Specifically, the models predict, unexpectedly, a strong effect of pharmacological inhibitors of cGMP-specific PDE5 on the cGMP/cAMP cross-talk. This may explain the successful use of weak PDE5-inhibitors, such as dipyridamole, in anti-platelet therapy. In conclusion, increased NO signalling or PDE5 inhibition are attractive ways of increasing cGMP-cAMP cross-talk selectively in platelets.


Assuntos
Plaquetas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Humanos , Modelos Teóricos , Ativação Plaquetária/genética , Agregação Plaquetária/genética
8.
Int J Mol Sci ; 19(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351208

RESUMO

Acute myeloid leukemia (AML) primary cells can be isolated from peripheral blood, suspended with media containing bovine serum and cryoprotectant, and stored in liquid nitrogen before being processed for proteomic analysis by mass spectrometry (MS). The presence of bovine serum and human blood proteins in AML samples can hamper the identifications of proteins, and thereby reduce the proteome coverage of the study. Herein, we have established the effect of phosphate buffered saline (PBS) washing on AML patient samples stored in media. Although PBS washes effectively removed serum and blood contaminants, the saline wash resulted in cell burst and remarkable protein material loss. We also compared different methods to preserve the AML proteome from THP-1 and Molm-13 cell lines before MS analysis: (1) stored in media containing bovine serum and dimethyl sulfoxide (DMSO); (2) stored as dried cell pellets; and (3) stored as cell lysates in 4% sodium dodecyl sulfate (SDS). MS analysis of differently preserved AML cell samples shows that preservation with DMSO produce a high number of fragile cells that will burst during freezing and thawing. Our studies encourage the use of alternative preservation methods for future MS analysis of the AML proteome.


Assuntos
Proteínas Sanguíneas/química , Leucemia Mieloide Aguda/genética , Proteoma/genética , Proteômica/métodos , Animais , Soluções Tampão , Bovinos , Humanos , Leucemia Mieloide Aguda/patologia , Espectrometria de Massas , Fosfatos/química , Proteoma/efeitos dos fármacos , Cloreto de Sódio/farmacologia
9.
Expert Rev Proteomics ; 14(8): 649-663, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28693350

RESUMO

INTRODUCTION: Mass spectrometry (MS)-based proteomics has become an indispensable tool for the characterization of the proteome and its post-translational modifications (PTM). In addition to standard protein sequence databases, proteogenomics strategies search the spectral data against the theoretical spectra obtained from customized protein sequence databases. Up to date, there are no published proteogenomics studies on acute myeloid leukemia (AML) samples. Areas covered: Proteogenomics involves the understanding of genomic and proteomic data. The intersection of both datatypes requires advanced bioinformatics skills. A standard proteogenomics workflow that could be used for the study of AML samples is described. The generation of customized protein sequence databases as well as bioinformatics tools and pipelines commonly used in proteogenomics are discussed in detail. Expert commentary: Drawing on evidence from recent cancer proteogenomics studies and taking into account the public availability of AML genomic data, the interpretation of present and future MS-based AML proteomic data using AML-specific protein sequence databases could discover new biological mechanisms and targets in AML. However, proteogenomics workflows including bioinformatics guidelines can be challenging for the wide AML research community. It is expected that further automation and simplification of the bioinformatics procedures might attract AML investigators to adopt the proteogenomics strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Proteogenômica/métodos , Biologia Computacional , Humanos , Espectrometria de Massas
10.
Biol Proced Online ; 18: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330413

RESUMO

BACKGROUND: Satisfactory sample preparation for mass spectrometry-based analysis is a critical step in the proteomics workflow. The quality and reproducibility of sample preparation can determine the coverage and confidence of proteomics results. Up to date, several methodologies have been described to produce suitable peptides for mass spectrometry analysis, followed by strategies for enrichment of post-translational modified peptides, if desired. Among them, the filter-aided sample preparation (FASP) has been introduced as a method to allow for removal of denaturants, reductants, alkylators, lipids and nucleic acids prior to trypsin digestion. Despite the high proteolytic digestion and contaminant removal efficiency described for this method, filter failure and consequently complete sample loss can discourage the use of this approach by the proteomic community. RESULTS: As judged by our quality controls, we were able to perform reliable and reproducible FASP for mass spectrometry analysis that allowed the quantification of 2141 proteins and 3694 phosphopeptides from as little as 20 and 320 µg of protein lysate from acute myeloid leukemia (AML) patients, respectively. Using the immobilized metal ion affinity chromatography (IMAC) method resulted in samples specifically enriched in phosphopeptides and allowed the quantification of a high number of both di- and multi-phosphopeptides in addition to the abundant mono-phosphopeptides. The workflows' high reproducibility from three biological replicates was demonstrated by the similar number of quantified proteins and localized phosphosites, and confirmed by the similar distributions of their molecular functions. We found that the combination of the FASP procedure with StageTip mixed-mode fractionation and IMAC are excellent workflows for the reproducible and deep study of AML proteomes and phosphoproteomes, respectively. CONCLUSIONS: The FASP procedure can be carried out without the risk of filter failure by performing a simple test of the filter quality before adding the protein sample. Herein, we demonstrate an efficient and reproducible FASP-based pipeline for the proteomic and phosphoproteomic analysis of AML patient samples which also can be used for the analysis of any other protein samples.

11.
Proteomics ; 14(17-18): 1971-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044641

RESUMO

As a direct consequence of the high diversity of the aggressive blood cancer acute myeloid leukemia (AML), proteomic samples from patients are strongly heterogeneous, rendering their accurate relative quantification challenging. In the present study, we investigated the benefits of using a super-SILAC mix of AML derived cell lines as internal standard (IS) for quantitative shotgun studies. The Molm-13, NB4, MV4-11, THP-1, and OCI-AML3 cell lines were selected for their complementarity with regard to clinical, cytogenetic, and molecular risk factors used for prognostication of AML patients. The resulting IS presents a high coverage of the AML proteome compared to single cell lines allied with high technical reproducibility, thus enabling its use for AML patient comparison. This was confirmed by comparing the protein regulation between the five cell lines and by applying the IS to patient material; hence, we were able to reproduce specific functional regulations known to be related to disease progression and molecular genetic abnormalities. The MS proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000441.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Proteoma/química
12.
Biochem Biophys Res Commun ; 449(3): 357-63, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24845383

RESUMO

In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.


Assuntos
Micropartículas Derivadas de Células/efeitos dos fármacos , GMP Cíclico/análogos & derivados , Selectina-P/biossíntese , Agregação Plaquetária/efeitos dos fármacos , Receptores de Trombina/fisiologia , Tionucleotídeos/farmacologia , Trombina/farmacologia , Micropartículas Derivadas de Células/fisiologia , Células Cultivadas , AMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Diclororribofuranosilbenzimidazol/análogos & derivados , Diclororribofuranosilbenzimidazol/farmacologia , Humanos , Fatores de Tempo
13.
J Proteome Res ; 12(1): 135-50, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23249167

RESUMO

A first research development progress report of the Chromosome 19 Consortium with members from Sweden, Norway, Spain, United States, China and India, a part of the Chromosome-centric Human Proteome Project (C-HPP) global initiative, is presented ( http://www.c-hpp.org ). From the chromosome 19 peptide-targeted library constituting 6159 peptides, a pilot study was conducted using a subset with 125 isotope-labeled peptides. We applied an annotation strategy with triple quadrupole, ESI-Qtrap, and MALDI mass spectrometry platforms, comparing the quality of data within and in between these instrumental set-ups. LC-MS conditions were outlined by multiplex assay developments, followed by MRM assay developments. SRM was applied to biobank samples, quantifying kallikrein 3 (prostate specific antigen) in plasma from prostate cancer patients. The antibody production has been initiated for more than 1200 genes from the entire chromosome 19, and the progress developments are presented. We developed a dedicated transcript microarray to serve as the mRNA identifier by screening cancer cell lines. NAPPA protein arrays were built to align with the transcript data with the Chromosome 19 NAPPA chip, dedicated to 90 proteins, as the first development delivery. We have introduced an IT-infrastructure utilizing a LIMS system that serves as the key interface for the research teams to share and explore data generated within the project. The cross-site data repository will form the basis for sample processing, including biological samples as well as patient samples from national Biobanks.


Assuntos
Cromossomos Humanos Par 19 , Genoma Humano , Proteoma , RNA Mensageiro , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/metabolismo , Bases de Dados de Proteínas , Expressão Gênica , Humanos , Espectrometria de Massas , Análise Serial de Proteínas , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
14.
Biochem Biophys Res Commun ; 437(4): 603-8, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23850619

RESUMO

The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations.


Assuntos
Plaquetas/efeitos dos fármacos , AMP Cíclico/análogos & derivados , Fatores de Troca do Nucleotídeo Guanina/agonistas , Receptores Purinérgicos P2Y12/metabolismo , Animais , Plaquetas/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Selectina-P/metabolismo , Fosforilação , Ativação Plaquetária , Transporte Proteico , Acetato de Tetradecanoilforbol/farmacologia , Tromboxanos/metabolismo
15.
Mar Drugs ; 11(2): 332-49, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23364682

RESUMO

Despite recent improvement in therapy, acute myeloid leukemia (AML) is still associated with high lethality. In the presented study, we analyzed the bioactive compound iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from a marine actinomycetes bacterium for the ability to induce cell death in a range of cell types. Iodinin showed selective toxicity to AML and acute promyelocytic (APL) leukemia cells, with EC50 values for cell death up to 40 times lower for leukemia cells when compared with normal cells. Iodinin also successfully induced cell death in patient-derived leukemia cells or cell lines with features associated with poor prognostic such as FLT3 internal tandem duplications or mutated/deficient p53. The cell death had typical apoptotic morphology, and activation of apoptotic signaling proteins like caspase-3. Molecular modeling suggested that iodinin could intercalate between bases in the DNA in a way similar to the anti-cancer drug daunorubicin (DNR), causing DNA-strand breaks. Iodinin induced apoptosis in several therapy-resistant AML-patient blasts, but to a low degree in peripheral blood leukocytes, and in contrast to DNR, not in rat cardiomyoblasts. The low activity towards normal cell types that are usually affected by anti-leukemia therapy suggests that iodinin and related compounds represent promising structures in the development of anti-cancer therapy.


Assuntos
Actinobacteria/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide , Actinobacteria/química , Adolescente , Adulto , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Daunorrubicina/química , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Molecular , Fenazinas/química , Fenazinas/metabolismo , Fenazinas/farmacologia , Ratos , Adulto Jovem
16.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672506

RESUMO

The qualitative and quantitative evaluation of proteome changes that condition cancer development can be achieved with liquid chromatography-mass spectrometry (LC-MS). LC-MS-based proteomics strategies are carried out according to predesigned workflows that comprise several steps such as sample selection, sample processing including labeling, MS acquisition methods, statistical treatment, and bioinformatics to understand the biological meaning of the findings and set predictive classifiers. As the choice of best options might not be straightforward, we herein review and assess past and current proteomics approaches for the discovery of new cancer biomarkers. Moreover, we review major bioinformatics tools for interpreting and visualizing proteomics results and suggest the most popular machine learning techniques for the selection of predictive biomarkers. Finally, we consider the approximation of proteomics strategies for clinical diagnosis and prognosis by discussing current barriers and proposals to circumvent them.

17.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201437

RESUMO

AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients.

18.
J Clin Med ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685612

RESUMO

Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.

19.
Front Oncol ; 12: 786739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198439

RESUMO

Metastatic tumors with moderate radiosensitivity account for most cancer-related deaths, highlighting the limitations of current radiotherapy regimens. The xCT-inhibitor sulfasalazine (SAS) sensitizes cancer cells to radiotherapy by blocking cystine uptake via the xCT membrane antiporter, and thereby glutathione (GSH) synthesis protecting against radiation-induced oxidative stress. The expression of xCT in multiple tumor types implies it as a target generic to cancer rather than confined to few subtypes. However, SAS has limited clinical potential as a radiosensitizer due to side effects and low bioavailability. Using SAS as a starting point, we previously developed synthetic xCT-inhibitors through scaffold hopping and structure optimization aided by structure-activity relationship analysis (SAR). Notably, the compound DC10 exhibited inhibition of GSH synthesis. In this study, we validated DC10 as a radiosensitizer in the xCT-expressing cancer cell lines A172, A375 and MCF7, and mice harboring melanoma xenografts. After DC10 treatment, we measured 14C-cystine uptake in the cancer cells using liquid scintillation counting, and intracellular GSH levels and reactive oxygen species (ROS) using luminescence assays. We performed immunoblotting of H2AX and ATM to assess DNA damage after treatment with DC10 and radiotherapy. We then assessed the effect of adding DC10 to radiation upon cancer cell colony formation. Blood samples from mice treated with DC10 underwent biochemical analysis to assess toxicity. Finally, mice with A375 melanomas in the flank, received DC10 and radiotherapy in combination, as monotherapies or no treatment. Notably, DC10 reduced cystine uptake and GSH synthesis and increased ROS levels in a dose-dependent manner. Furthermore, DC10 interacted synergistically with radiation to increase DNA damage and reduce tumor cell colony formation. Mice receiving DC10 were clinically unaffected, whereas blood samples analysis to assess bone marrow suppression, liver or kidney toxicity revealed no significant differences between treated mice and untreated controls. Importantly, DC10 potentiated the anti-tumor efficacy of radiation in mice with melanoma xenografts. We conclude that DC10 is well tolerated and acts as a radiosensitizer by inhibiting cystine uptake, leading to GSH depletion and increased oxidative stress. Our findings demonstrate the feasibility of using synthetic xCT-inhibitors to overcome radioresistance.

20.
Mol Pharm ; 8(2): 360-7, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21214185

RESUMO

We have isolated a novel cyanobacterial cyclic peptide (nostocyclopeptide M1; Ncp-M1) that blocks the hepatotoxic action of microcystin (MC) and nodularin (Nod). We show here that Ncp-M1 is nontoxic to primary hepatocytes in long-term culture. Ncp-M1 does not affect any known intracellular targets or pathways involved in MC action, like protein phosphatases, CaM-KII, or ROS-dependent cell death effectors. In support of this conclusion Ncp-M1 had no protective effect when microinjected into cells. Rather, the antitoxin effect was solely due to blocked hepatocyte uptake of MC and Nod. The hepatic uptake of MC and Nod is mainly via the closely related organic anion transporters OATP1B1 and OATP1B3, which also mediate hepatic transport of endogenous metabolites and hormones as well as drugs. OATP1B3 is also expressed in some aggressive cancers, where it confers apoptosis resistance. We show that Ncp-M1 inhibits transport through OATP1B3 and OATP1B1 expressed in HEK293 cells. The Ncp-M1 molecule has several nonproteinogenic amino acids and an imino bond, which hamper its synthesis. Moreover, a cyclic all L-amino acid heptapeptide analogue of Ncp-M1 also inhibits the OATP1B1/1B3 transporters, and with higher OATP1B3 preference than Ncp-M1 itself. The nontoxic Ncp-M1 and its synthetic cyclic peptide analogues thus provide new tools to probe the role of OATB1B1/1B3 mediated drug and metabolite transport in liver and cancer cells. They can also serve as scaffolds to design new, exopeptidase resistant OATP1B3-specific modulators.


Assuntos
Hepatócitos/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Microcistinas/farmacologia , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA