Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nucleic Acids Res ; 52(3): 1325-1340, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096103

RESUMO

Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Polifosfatos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , Exonucleases , Nucleotídeos/metabolismo , Nucleotidiltransferases , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo
2.
Bioorg Med Chem ; 28(22): 115713, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128910

RESUMO

Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.


Assuntos
Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031359

RESUMO

The Flavivirus Zika virus (ZIKV) is the causal agent of neurological disorders like microcephaly in newborns or Guillain-Barre syndrome. Its NS5 protein embeds a methyltransferase (MTase) domain involved in the formation of the viral mRNA cap. We investigated the structural and functional properties of the ZIKV MTase. We show that the ZIKV MTase can methylate RNA cap structures at the N-7 position of the cap, and at the 2'-O position on the ribose of the first nucleotide, yielding a cap-1 structure. In addition, the ZIKV MTase methylates the ribose 2'-O position of internal adenosines of RNA substrates. The crystal structure of the ZIKV MTase determined at a 2.01-Å resolution reveals a crystallographic homodimer. One chain is bound to the methyl donor (S-adenosyl-l-methionine [SAM]) and shows a high structural similarity to the dengue virus (DENV) MTase. The second chain lacks SAM and displays conformational changes in the αX α-helix contributing to the SAM and RNA binding. These conformational modifications reveal a possible molecular mechanism of the enzymatic turnover involving a conserved Ser/Arg motif. In the second chain, the SAM binding site accommodates a sulfate close to a glycerol that could serve as a basis for structure-based drug design. In addition, compounds known to inhibit the DENV MTase show similar inhibition potency on the ZIKV MTase. Altogether these results contribute to a better understanding of the ZIKV MTase, a central player in viral replication and host innate immune response, and lay the basis for the development of potential antiviral drugs.IMPORTANCE The Zika virus (ZIKV) is associated with microcephaly in newborns, and other neurological disorders such as Guillain-Barre syndrome. It is urgent to develop antiviral strategies inhibiting the viral replication. The ZIKV NS5 embeds a methyltransferase involved in the viral mRNA capping process, which is essential for viral replication and control of virus detection by innate immune mechanisms. We demonstrate that the ZIKV methyltransferase methylates the mRNA cap and adenosines located in RNA sequences. The structure of ZIKV methyltransferase shows high structural similarities to the dengue virus methyltransferase, but conformational specificities highlight the role of a conserved Ser/Arg motif, which participates in RNA and SAM recognition during the reaction turnover. In addition, the SAM binding site accommodates a sulfate and a glycerol, offering structural information to initiate structure-based drug design. Altogether, these results contribute to a better understanding of the Flavivirus methyltransferases, which are central players in the virus replication.


Assuntos
Antivirais/química , Metiltransferases/química , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Sítio Alostérico , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Escherichia coli , Ligação de Hidrogênio , Metiltransferases/biossíntese , Modelos Moleculares , Ligação Proteica , Proteínas não Estruturais Virais/biossíntese
4.
PLoS Pathog ; 11(3): e1004733, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799064

RESUMO

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Assuntos
Antivirais/química , Cardiovirus/enzimologia , Enterovirus Humano B/enzimologia , Poliovirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HeLa , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 42(18): 11642-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25209234

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.


Assuntos
RNA Polimerase Dependente de RNA/química , RNA/biossíntese , Elongação da Transcrição Genética , Iniciação da Transcrição Genética , Proteínas não Estruturais Virais/química , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
6.
J Virol ; 88(10): 5595-607, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600002

RESUMO

UNLABELLED: Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE: The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.


Assuntos
Cardiovirus/enzimologia , Domínio Catalítico , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Cardiovirus/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
7.
J Virol ; 87(8): 4545-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408610

RESUMO

Dengue virus (DENV) is an important human pathogen, especially in the tropical and subtropical parts of the world, causing considerable morbidity and mortality. DENV replication occurs in the cytoplasm; however, a high proportion of nonstructural protein 5 (NS5), containing methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities, accumulates in the nuclei of infected cells. The present study investigates the impact of nuclear localization of NS5 on its known functions, including viral RNA replication and subversion of the type I interferon response. By using a mutation analysis approach, we identified the most critical residues within the αß nuclear localization signal (αßNLS), which are essential for the nuclear accumulation of this protein. Although we observed an overall correlation between reduced nuclear accumulation of NS5 and impaired RNA replication, we identified one mutant with drastically reduced amounts of nuclear NS5 and virtually unaffected RNA replication, arguing that nuclear localization of NS5 does not correlate strictly with DENV replication, at least in cell culture. Because NS5 plays an important role in blocking interferon signaling via STAT-2 (signal transducer and activator of transcription 2) degradation, the abilities of the NLS mutants to block this pathway were investigated. All mutants were able to degrade STAT-2, with accordingly similar type I interferon resistance phenotypes. Since the NLS is contained within the RdRp domain, the MTase and RdRp activities of the mutants were determined by using recombinant full-length NS5. We found that the C-terminal region of the αßNLS is a critical functional element of the RdRp domain required for polymerase activity. These results indicate that efficient DENV RNA replication requires only minimal, if any, nuclear NS5, and they identify the αßNLS as a structural element required for proper RdRp activity.


Assuntos
Núcleo Celular/metabolismo , Vírus da Dengue/fisiologia , Interferon Tipo I/antagonistas & inibidores , RNA Viral/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Análise Mutacional de DNA , Interações Hospedeiro-Patógeno , Humanos , Sinais de Localização Nuclear , Proteólise , Fator de Transcrição STAT2/metabolismo
8.
PLoS Pathog ; 8(9): e1002912, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028313

RESUMO

The dengue virus (DV) is an important human pathogen from the Flavivirus genus, whose genome- and antigenome RNAs start with the strictly conserved sequence pppAG. The RNA-dependent RNA polymerase (RdRp), a product of the NS5 gene, initiates RNA synthesis de novo, i.e., without the use of a pre-existing primer. Very little is known about the mechanism of this de novo initiation and how conservation of the starting adenosine is achieved. The polymerase domain NS5Pol(DV) of NS5, upon initiation on viral RNA templates, synthesizes mainly dinucleotide primers that are then elongated in a processive manner. We show here that NS5Pol(DV) contains a specific priming site for adenosine 5'-triphosphate as the first transcribed nucleotide. Remarkably, in the absence of any RNA template the enzyme is able to selectively synthesize the dinucleotide pppAG when Mn(2+) is present as catalytic ion. The T794 to A799 priming loop is essential for initiation and provides at least part of the ATP-specific priming site. The H798 loop residue is of central importance for the ATP-specific initiation step. In addition to ATP selection, NS5Pol(DV) ensures the conservation of the 5'-adenosine by strongly discriminating against viral templates containing an erroneous 3'-end nucleotide in the presence of Mg(2+). In the presence of Mn(2+), NS5Pol(DV) is remarkably able to generate and elongate the correct pppAG primer on these erroneous templates. This can be regarded as a genomic/antigenomic RNA end repair mechanism. These conservational mechanisms, mediated by the polymerase alone, may extend to other RNA virus families having RdRps initiating RNA synthesis de novo.


Assuntos
Vírus da Dengue/enzimologia , Vírus da Dengue/genética , Genoma Viral , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Primers do DNA , Manganês/química , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Moldes Genéticos , Proteínas não Estruturais Virais/genética
10.
Antiviral Res ; 212: 105574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905944

RESUMO

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
11.
PLoS Pathog ; 6(4): e1000863, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421945

RESUMO

SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 (7Me)GpppA-RNAs. The latter are then selectively 2'O-methylated by the 2'O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 (7Me)GpppA(2'OMe)-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC(50) values in the micromolar range, providing a validated basis for anti-coronavirus drug design.


Assuntos
Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas não Estruturais Virais/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Técnicas In Vitro , Metilação , Capuzes de RNA/química , RNA Mensageiro , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , tRNA Metiltransferases
12.
Med Sci (Paris) ; 28(4): 423-9, 2012 Apr.
Artigo em Francês | MEDLINE | ID: mdl-22549871

RESUMO

Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.


Assuntos
Capuzes de RNA/fisiologia , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Viral/metabolismo , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/fisiologia , Animais , Células Eucarióticas/metabolismo , Células Eucarióticas/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Vírus de RNA/química , RNA Viral/química , RNA Viral/genética
13.
IUCrJ ; 9(Pt 4): 468-479, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844481

RESUMO

Arenaviruses are emerging enveloped negative-sense RNA viruses that cause neurological and hemorrhagic diseases in humans. Currently, no FDA-approved vaccine or therapeutic agent is available except for ribavirin, which must be administered early during infection for optimum efficacy. A hallmark of arenavirus infection is rapid and efficient immune suppression mediated by the exonuclease domain encoded by the nucleoprotein. This exonuclease is therefore an attractive target for the design of novel antiviral drugs since exonuclease inhibitors might not only have a direct effect on the enzyme but could also boost viral clearance through stimulation of the innate immune system of the host cell. Here, in silico screening and an enzymatic assay were used to identify a novel, specific but weak inhibitor of the arenavirus exonuclease, with IC50 values of 65.9 and 68.6 µM for Mopeia virus and Lymphocytic choriomeningitis virus, respectively. This finding was further characterized using crystallographic and docking approaches. This study serves as a proof of concept and may have assigned a new therapeutic purpose for the bisphosphonate family, therefore paving the way for the development of inhibitors against Arenaviridae.

14.
Nat Commun ; 13(1): 621, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110538

RESUMO

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Assuntos
Antivirais/química , Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacologia , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genética
15.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34075346

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

16.
J Gen Virol ; 91(Pt 1): 112-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19776234

RESUMO

The flavivirus RNA genome contains a conserved cap-1 structure, (7Me)GpppA(2'OMe)G, at the 5' end. Two mRNA cap methyltransferase (MTase) activities involved in the formation of the cap, the (guanine-N7)- and the (nucleoside-2'O)-MTases (2'O-MTase), reside in a single domain of non-structural protein NS5 (NS5MTase). This study reports on the biochemical characterization of the 2'O-MTase activity of NS5MTase of dengue virus (NS5MTase(DV)) using purified, short, capped RNA substrates ((7Me)GpppAC(n) or GpppAC(n)). NS5MTase(DV) methylated both types of substrate exclusively at the 2'O position. The efficiency of 2'O-methylation did not depend on the methylation of the N7 position. Using (7Me)GpppAC(n) and GpppAC(n) substrates of increasing chain lengths, it was found that both NS5MTase(DV) 2'O activity and substrate binding increased before reaching a plateau at n=5. Thus, the cap and 6 nt might define the interface providing efficient binding of enzyme and substrate. K(m) values for (7Me)GpppAC(5) and the co-substrate S-adenosyl-L-methionine (AdoMet) were determined (0.39 and 3.26 microM, respectively). As reported for other AdoMet-dependent RNA and DNA MTases, the 2'O-MTase activity of NS5MTase(DV) showed a low turnover of 3.25x10(-4) s(-1). Finally, an inhibition assay was set up and tested on GTP and AdoMet analogues as putative inhibitors of NS5MTase(DV), which confirmed efficient inhibition by the reaction product S-adenosyl-homocysteine (IC(50) 0.34 microM) and sinefungin (IC(50) 0.63 microM), demonstrating that the assay is sufficiently sensitive to conduct inhibitor screening and characterization assays.


Assuntos
Vírus da Dengue/enzimologia , Metiltransferases/metabolismo , Oligonucleotídeos/metabolismo , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Metilação , Metiltransferases/antagonistas & inibidores , Modelos Moleculares , Estrutura Terciária de Proteína , S-Adenosilmetionina/metabolismo
17.
Nat Commun ; 11(1): 4682, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943628

RESUMO

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Pirazinas/farmacologia , Amidas/farmacocinética , Animais , Antivirais/farmacocinética , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , RNA-Polimerase RNA-Dependente de Coronavírus , Modelos Moleculares , Mutagênese/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , Pirazinas/farmacocinética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Análise de Sequência , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
18.
Antiviral Res ; 178: 104793, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283108

RESUMO

The rapid global emergence of SARS-CoV-2 has been the cause of significant health concern, highlighting the immediate need for antivirals. Viral RNA-dependent RNA polymerases (RdRp) play essential roles in viral RNA synthesis, and thus remains the target of choice for the prophylactic or curative treatment of several viral diseases, due to high sequence and structural conservation. To date, the most promising broad-spectrum class of viral RdRp inhibitors are nucleoside analogues (NAs), with over 25 approved for the treatment of several medically important viral diseases. However, Coronaviruses stand out as a particularly challenging case for NA drug design due to the presence of an exonuclease (ExoN) domain capable of excising incorporated NAs and thus providing resistance to many of these available antivirals. Here we use the available structures of the SARS-CoV RdRp and ExoN proteins, as well as Lassa virus N exonuclease to derive models of catalytically competent SARS-CoV-2 enzymes. We then map a promising NA candidate, GS-441524 (the active metabolite of Remdesivir) to the nucleoside active site of both proteins, identifying the residues important for nucleotide recognition, discrimination, and excision. Interestingly, GS-441524 addresses both enzyme active sites in a manner consistent with significant incorporation, delayed chain termination, and altered excision due to the ribose 1'-CN group, which may account for the increased antiviral effect compared to other available analogues. Additionally, we propose structural and function implications of two previously identified RdRp resistance mutations in relation to resistance against Remdesivir. This study highlights the importance of considering the balance between incorporation and excision properties of NAs between the RdRp and ExoN.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antimetabólitos/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Exorribonucleases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antimetabólitos/química , Antivirais/química , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , RNA-Polimerase RNA-Dependente de Coronavírus , Farmacorresistência Viral , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Modelos Moleculares , Mutação , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Conformação Proteica , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
19.
J Gen Virol ; 90(Pt 12): 2912-2922, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19710254

RESUMO

The West Nile virus (WNV) NS5 protein contains a methyltransferase (MTase) domain involved in RNA capping and an RNA-dependent RNA polymerase (RdRp) domain essential for virus replication. Crystal structures of individual WNV MTase and RdRp domains have been solved; however, the structure of full-length NS5 has not been determined. To gain more insight into the structure of NS5 and interactions between the MTase and RdRp domains, we generated a panel of seven monoclonal antibodies (mAbs) to the NS5 protein of WNV (Kunjin strain) and mapped their binding sites using a series of truncated NS5 proteins and synthetic peptides. Binding sites of four mAbs (5D4, 4B6, 5C11 and 6A10) were mapped to residues 354-389 in the fingers subdomain of the RdRp. This is consistent with the ability of these mAbs to inhibit RdRp activity in vitro and suggests that this region represents a potential target for RdRp inhibitors. Using a series of synthetic peptides, we also identified a linear epitope (bound by mAb 5H1) that mapped to a 13 aa stretch surrounding residues 47 and 49 in the MTase domain, a region predicted to interact with the palm subdomain of the RdRp. The failure of one mAb (7G6) to bind both N- and C-terminally truncated NS5 recombinants indicates that the antibody recognizes a conformational epitope that requires the presence of residues in both the MTase and RdRp domains. These data support a structural model of the full-length NS5 molecule that predicts a physical interaction between the MTase and the RdRp domains.


Assuntos
Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Metiltransferases , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/imunologia , Vírus do Nilo Ocidental , Animais , Sítios de Ligação , Ligação Competitiva , Feminino , Humanos , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/imunologia , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação , Conformação Proteica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Proteínas não Estruturais Virais/síntese química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/imunologia
20.
J Virol ; 82(16): 8071-84, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18417574

RESUMO

The coronavirus family of positive-strand RNA viruses includes important pathogens of livestock, companion animals, and humans, including the severe acute respiratory syndrome coronavirus that was responsible for a worldwide outbreak in 2003. The unusually complex coronavirus replicase/transcriptase is comprised of 15 or 16 virus-specific subunits that are autoproteolytically derived from two large polyproteins. In line with bioinformatics predictions, we now show that feline coronavirus (FCoV) nonstructural protein 16 (nsp16) possesses an S-adenosyl-L-methionine (AdoMet)-dependent RNA (nucleoside-2'O)-methyltransferase (2'O-MTase) activity that is capable of cap-1 formation. Purified recombinant FCoV nsp16 selectively binds to short capped RNAs. Remarkably, an N7-methyl guanosine cap ((7Me)GpppAC(3-6)) is a prerequisite for binding. High-performance liquid chromatography analysis demonstrated that nsp16 mediates methyl transfer from AdoMet to the 2'O position of the first transcribed nucleotide, thus converting (7Me)GpppAC(3-6) into (7Me)GpppA(2')(O)(Me)C(3-6). The characterization of 11 nsp16 mutants supported the previous identification of residues K45, D129, K169, and E202 as the putative K-D-K-E catalytic tetrad of the enzyme. Furthermore, residues Y29 and F173 of FCoV nsp16, which may be the functional counterparts of aromatic residues involved in substrate recognition by the vaccinia virus MTase VP39, were found to be essential for both substrate binding and 2'O-MTase activity. Finally, the weak inhibition profile of different AdoMet analogues indicates that nsp16 has evolved an atypical AdoMet binding site. Our results suggest that coronavirus mRNA carries a cap-1, onto which 2'O methylation follows an order of events in which 2'O-methyl transfer must be preceded by guanine N7 methylation, with the latter step being performed by a yet-unknown N7-specific MTase.


Assuntos
Biologia Computacional/métodos , Coronavirus Felino/metabolismo , Metiltransferases/química , Capuzes de RNA/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Gatos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Nucleotídeos/química , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA