Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Endocrinology ; 147(7): 3510-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16574794

RESUMO

Neuropeptide S (NPS) is a recently discovered peptide shown to be involved in the modulation of arousal and fear responses. It has also been shown that lateral ventricle administration of NPS causes a significant decrease in food intake. Neuropeptides involved in the modulation of arousal have been shown to be involved in the regulation of the hypothalamo-pituitary adrenal (HPA) axis and food intake. In this study, we have examined the effect of intracerebroventricular (ICV) administration of NPS on behavior, regulation of the HPA axis, and food intake. ICV NPS significantly increased plasma ACTH and corticosterone 10 and 40 min after injection, respectively. A single ICV injection of NPS caused a significant increase in rearing activity as well as ambulatory movement for up to 45 min after injection. We then studied the effect of paraventricular nucleus (PVN) administration of NPS on the regulation of the HPA axis, behavior, and food intake. There was a significant increase in plasma ACTH and corticosterone after a single NPS PVN injection. Incubation of hypothalamic explants with increasing concentrations of NPS caused a significant increase in CRH and arginine vasopressin release. In addition, PVN administration of NPS dose-dependently inhibited food intake in the first hour after injection, although no effect on food intake was seen after this time. PVN administration of NPS caused a significant increase in rearing activity. These data demonstrate a novel role for NPS in the stimulation of the HPA axis.


Assuntos
Comportamento Alimentar , Hipotálamo/metabolismo , Neuropeptídeos/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Comportamento Animal , Corticosterona/sangue , Corticosterona/metabolismo , Ingestão de Alimentos , Humanos , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipófise/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
2.
Endocrinology ; 147(6): 2886-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16556758

RESUMO

Intracerebroventricular (ICV) administration of the hypothalamic neuropeptide neuromedin U (NMU) or the adipostat hormone leptin increases plasma ACTH and corticosterone. The relationship between leptin and NMU in the regulation of the hypothalamo-pituitary adrenal (HPA) axis is currently unknown. In this study, leptin (1 nm) significantly increased the release of CRH from ex vivo hypothalamic explants by 207 +/- 8.4% (P < 0.05 vs. basal), an effect blocked by the administration of anti-NMU IgG. The ICV administration of leptin (10 mug, 0.625 nmol) increased plasma ACTH and corticosterone 20 min after injection [plasma ACTH (picograms per milliliter): vehicle, 63 +/- 20, leptin, 135 +/- 36, P < 0.05; plasma corticosterone (nanograms per milliliter): vehicle, 285 +/- 39, leptin, 452 +/- 44, P < 0.01]. These effects were partially attenuated by the prior administration of anti-NMU IgG. Peripheral leptin also stimulated ACTH release, an effect attenuated by prior ICV administration of anti-NMU IgG. We examined the diurnal pattern of hypothalamic NMU mRNA expression and peptide content, plasma leptin, and plasma corticosterone. The diurnal changes in hypothalamic NMU mRNA expression were positively correlated with hypothalamic NMU peptide content, plasma corticosterone, and plasma leptin. The ICV administration of anti-NMU IgG significantly attenuated the dark phase rise in corticosterone [corticosterone (nanograms per milliliter): vehicle, 493 +/- 38; NMU IgG, 342 +/- 47 (P < 0.05)]. These studies suggest that NMU may play a role in the regulation of the HPA axis and partially mediate leptin-induced HPA stimulation.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Leptina/farmacologia , Neuropeptídeos/fisiologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Animais , Ritmo Circadiano , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Injeções Intraventriculares , Leptina/administração & dosagem , Leptina/sangue , Masculino , Neuropeptídeos/genética , Sistema Hipófise-Suprarrenal/fisiologia , RNA Mensageiro/análise , Ratos , Ratos Wistar
3.
Endocrinology ; 146(12): 5120-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16150917

RESUMO

Peptide YY (PYY) and glucagon like peptide (GLP)-1 are cosecreted from intestinal L cells, and plasma levels of both hormones rise after a meal. Peripheral administration of PYY(3-36) and GLP-1(7-36) inhibit food intake when administered alone. However, their combined effects on appetite are unknown. We studied the effects of peripheral coadministration of PYY(3-36) with GLP-1(7-36) in rodents and man. Whereas high-dose PYY(3-36) (100 nmol/kg) and high-dose GLP-1(7-36) (100 nmol/kg) inhibited feeding individually, their combination led to significantly greater feeding inhibition. Additive inhibition of feeding was also observed in the genetic obese models, ob/ob and db/db mice. At low doses of PYY(3-36) (1 nmol/kg) and GLP-1(7-36) (10 nmol/kg), which alone had no effect on food intake, coadministration led to significant reduction in food intake. To investigate potential mechanisms, c-fos immunoreactivity was quantified in the hypothalamus and brain stem. In the hypothalamic arcuate nucleus, no changes were observed after low-dose PYY(3-36) or GLP-1(7-36) individually, but there were significantly more fos-positive neurons after coadministration. In contrast, there was no evidence of additive fos-stimulation in the brain stem. Finally, we coadministered PYY(3-36) and GLP-1(7-36) in man. Ten lean fasted volunteers received 120-min infusions of saline, GLP-1(7-36) (0.4 pmol/kg.min), PYY(3-36) (0.4 pmol/kg.min), and PYY(3-36) (0.4 pmol/kg.min) + GLP-1(7-36) (0.4 pmol/kg.min) on four separate days. Energy intake from a buffet meal after combined PYY(3-36) + GLP-1(7-36) treatment was reduced by 27% and was significantly lower than that after either treatment alone. Thus, PYY(3-36) and GLP-1(7-36), cosecreted after a meal, may inhibit food intake additively.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Peptídeos Semelhantes ao Glucagon/farmacologia , Glucagon/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Combinação de Medicamentos , Sinergismo Farmacológico , Ingestão de Energia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Humanos , Imuno-Histoquímica , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Obesidade/genética , Obesidade/fisiopatologia , Fragmentos de Peptídeos/administração & dosagem , Peptídeo YY/administração & dosagem , Ratos
4.
Biochem Pharmacol ; 86(1): 146-53, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23415904

RESUMO

11ß-Hydroxysteroid dehydrogenase 1 (11ßHSD1; EC 1.1.1.146) generates active glucocorticoids from inert 11-keto metabolites. However, it can also metabolize alternative substrates, including 7ß-hydroxy- and 7-keto-cholesterol (7ßOHC, 7KC). This has been demonstrated in vitro but its consequences in vivo are uncertain. We used genetically modified mice to investigate the contribution of 11ßHSD1 to the balance of circulating levels of 7KC and 7ßOHC in vivo, and dissected in vitro the kinetics of the interactions between oxysterols and glucocorticoids for metabolism by the mouse enzyme. Circulating levels of 7KC and 7ßOHC in mice were 91.3±22.3 and 22.6±5.7 nM respectively, increasing to 1240±220 and 406±39 nM in ApoE(-/-) mice receiving atherogenic western diet. Disruption of 11ßHSD1 in mice increased (p<0.05) the 7KC/7ßOHC ratio in plasma (by 20%) and also in isolated microsomes (2 fold). The 7KC/7ßOHC ratio was similarly increased when NADPH generation was restricted by disruption of hexose-6-phosphate dehydrogenase. Reduction and oxidation of 7-oxysterols by murine 11ßHSD1 proceeded more slowly and substrate affinity was lower than for glucocorticoids. in vitro 7ßOHC was a competitive inhibitor of oxidation of corticosterone (Ki=0.9 µM), whereas 7KC only weakly inhibited reduction of 11-dehydrocorticosterone. However, supplementation of 7-oxysterols in cultured cells, secondary to cholesterol loading, preferentially slowed reduction of glucocorticoids, rather than oxidation. Thus, in mouse, 11ßHSD1 influenced the abundance and balance of circulating and tissue levels of 7ßOHC and 7KC, promoting reduction of 7KC. In health, 7-oxysterols are unlikely to regulate glucocorticoid metabolism. However, in hyperlipidaemia, 7-oxysterols may inhibit glucocorticoid metabolism and modulate signaling through corticosteroid receptors.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Hidroxicolesteróis/metabolismo , Cetocolesteróis/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Desidrogenases de Carboidrato/genética , Domínio Catalítico , Simulação por Computador , Glucocorticoides/metabolismo , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Camundongos Transgênicos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Oxirredução
5.
J Endocrinol ; 214(3): 367-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718432

RESUMO

Glucocorticoid concentrations are a balance between production under the negative feedback control and diurnal rhythm of the hypothalamic-pituitary-adrenal (HPA) axis and peripheral metabolism, for example by the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which catalyses the reduction of inactive cortisone (11-dehydrocorticosterone (11-DHC) in mice) to cortisol (corticosterone in mice). Reductase activity is conferred upon 11ß-HSD1 by hexose-6-phosphate dehydrogenase (H6PDH). 11ß-HSD1 is implicated in the development of obesity, and selective 11ß-HSD1 inhibitors are currently under development. We sought to address the concern regarding potential up-regulation of the HPA axis associated with inhibition of 11ß-HSD1. We assessed biomarkers for allele combinations of 11ß-HSD1 and H6PDH derived from double heterozygous mouse crosses. H6PDH knock out (KO) adrenals were 69% larger than WT while 11ß-HSD1 KO and double KO (DKO) adrenals were ~30% larger than WT - indicative of increased HPA axis drive in KO animals. ACTH-stimulated circulating corticosterone concentrations were 2.2-fold higher in H6PDH KO animals and ~1.5-fold higher in 11ß-HSD1 KO and DKO animals compared with WT, proportional to the observed adrenal hypertrophy. KO of H6PDH resulted in a substantial increase in urinary DHC metabolites in males (65%) and females (61%). KO of 11ß-HSD1 alone or in combination with H6PDH led to significant increases (36 and 42% respectively) in urinary DHC metabolites in females only. Intermediate 11ß-HSD1/H6PDH heterozygotes maintained a normal HPA axis. Urinary steroid metabolite profile by gas chromatography/mass spectrometry as a biomarker assay may be beneficial in assaying HPA axis status clinically in cases of congenital and acquired 11ß-HSD1/H6PDH deficiency.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Hiperplasia Suprarrenal Congênita , Desidrogenases de Carboidrato/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/deficiência , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/fisiologia , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/enzimologia , Hiperplasia Suprarrenal Congênita/urina , Animais , Biomarcadores/análise , Biomarcadores/urina , Desidrogenases de Carboidrato/deficiência , Desidrogenases de Carboidrato/metabolismo , Corticosterona/sangue , Feminino , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Caracteres Sexuais , Esteroides/análise , Esteroides/urina
6.
Endocrinology ; 153(7): 3236-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555437

RESUMO

Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11ß-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11ß-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11ß-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11ß-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11ß-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11ß-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA activation and to a crucial role of extrahepatic 11ß-HSD1 expression, highlighting the contribution of cross talk between GC target tissues in determining metabolic phenotype.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Regulação Enzimológica da Expressão Gênica , Fígado/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Cortisona/análogos & derivados , Cortisona/farmacologia , Glucocorticoides/metabolismo , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microssomos Hepáticos/metabolismo , Fenótipo
7.
Endocrinology ; 152(1): 93-102, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21106871

RESUMO

Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11ß-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11ß-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11ß-HSD1/H6PDH double-KO (DKO) mice, in which 11ß-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11ß-HSD1KO mice. Critically, in contrast to 11ß-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11ß-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Desidrogenases de Carboidrato/metabolismo , Homeostase/fisiologia , Músculo Esquelético/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Glicemia , Desidrogenases de Carboidrato/genética , Corticosterona/sangue , Regulação Enzimológica da Expressão Gênica , Insulina/sangue , Camundongos , Camundongos Knockout , Doenças Musculares/enzimologia , Doenças Musculares/genética
8.
Regul Pept ; 172(1-3): 8-15, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21802451

RESUMO

Vasoactive intestinal peptide (VIP) is a 28 amino acid peptide expressed throughout the peripheral and central nervous systems. VIP and the VIP receptor VPAC(2)R are expressed in hypothalamic nuclei involved in the regulation of energy homeostasis. VIP has been shown to be involved in the regulation of energy balance in a number of non-mammalian vertebrates. We therefore examined the effects of intracerebroventricular (ICV) administration of VIP on food intake, energy expenditure and activity in adult male Wistar rats. VIP administration caused a potent short lived decrease in food intake and an increase in activity and energy expenditure. The pathways potentially involved in the anorexigenic effects of VIP were investigated by measuring the release of neuropeptides involved in the regulation of food intake from hypothalamic explants treated with VIP. VIP significantly stimulated the release of the anorexigenic peptide alpha-melanocyte stimulating hormone (αMSH). These studies suggest that VIP may have an endogenous role in the hypothalamic control of energy homeostasis.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Hormônios Estimuladores de Melanócitos/administração & dosagem , Hormônios Estimuladores de Melanócitos/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA